
THE EQUIVARIANT COHOMOLOGY OF1 Fln(C)

Let Fln(C) be the complex flag manifold. This can be regarded either as the space of all
chains V1 ⊂ . . . ⊂ Vn = Cn, where dimVk = k, or the space of all sequences (L1, . . . , Ln),
where Lj is perpendicular to Lk, for any two j, k, with j 6= k. We denote by T = (S1)n the
maximal torus of U(n), so that Fln(C) ' U(n)/T . The following theorem which describes
the T -equivariant cohomology2 of Fln(C) was proved by Rebecca Goldin in [1, 2].

Theorem. (Goldin) We have

H∗T (Fln(C)) ' Z[x1, . . . , xn, u1 . . . , un]/〈
∏

(1 + xj) =
∏

(1 + uj)〉.

Here xj = cT1 (Lj) ∈ H2
T (Fln(C)) is the T -equivariant Chern class of the line bundle Lj; also

uj ∈ H∗T (BT ) is the T -equivariant Euler class of the line bundle ET ×T Cej over BT , so
that we have

H∗(BT ) = Z[u1, . . . , un].

In what follows I just wanted to spell out the details of the proof that can be found in the
two aforementioned works.

I first recall that, by definition, H∗T (Fln(C)) = H∗(ET ×T Fln(C)). One has the identifi-
cation

(1) ET ×T Fln(C) ' Fl(ET ×T Cn),

which is explained as follows: π : ET ×T Cn → BT is the rank n vector bundle whose fiber
over [e] ∈ BT = ET/T is

π−1([e]) := {[e, v] | v ∈ Cn} ' Cn,

where the last (linear) isomorphism, call it ı[e], maps v to [e, v], for all v ∈ Cn (it is an easy
exercise to show that ı[e] really depends only on the coset of e); then

σ : Fl(ET ×T Cn)→ BT

is the associated flag bundle, whose fiber over [e] ∈ BT is the flag manifold

Fl(π−1([e])) = {(L′1, . . . , L′n) | L′j ⊂ π−1([e]), dimL′j = 1, L′j ⊥ L′k if j 6= k}.

The isomorphism (1) is given by

(2) [e, (L1, . . . , Ln)] 7→ ([e], ı[e](L1), . . . , ı[e](Ln)),

for all (L1, . . . , Ln) ∈ Fln(C).
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The manifold Fl(ET ×T Cn) is a split manifold [Bott-Tu, section 21] for the vector bundle
ET ×T Cn, in the sense that one has the following splitting of the pull-back vector bundle

σ−1(ET ×T Cn) =
n⊕

j=1

L′j

(where the line bundles Lj over Fl(ET ×T Cn) are obvious) and also the map

σ∗ : H∗(BT )→ H∗(Fl(ET ×T Cn))

is injective (this follows from the fact that the cohomology of both the base space and the
fiber of the bundle σ vanish in all odd dimensions). According to [Bott-Tu, p. 284], the ring
H∗(Fl(ET ×T Cn)) is generated by σ∗H∗(BT ) ' H∗(BT ) together with the Chern classes
x′j := c1(L′j), 1 ≤ j ≤ n, which satisfy the relations

n∏
j=1

(1 + x′j)
!

= c(ET ×T Cn) =
n∏

j=1

(1 + uj),

where the last equality uses that

ET ×T Cn =
n⊕

j=1

ET ×T Cej.

To prove Theorem 1.1, I only need to show that the identification (1) can be completed to a

line bundle isomorphism between L̂j over Fl(ET ×T Cn) and ET ×T Lj over ET ×T Fln(C).
Indeed, the fiber of the former bundle over the point ([e], L′1, . . . , L

′
n) is L′j (which is a

line in π−1([e])). This implies that the fiber over the image of [e, (L1, . . . , Ln)] (see (2))
is ı[e](Lj). So the line bundle isomorphism I was looking for is the natural identification
between {[e, v] | v ∈ Lj} and ı[e](Lj).
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