
DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES

5. The Second Fundamental Form of a Surface

The main idea of this chapter is to try to measure to which extent a surface S is different from
a plane, in other words, how “curved” is a surface. The idea of doing this is by assigning
to each point P on S a unit normal vector N(P ) (that is, a vector perpendicular to the
tangent plane at P ). We are measuring to which extent is the map from S to R

3 given by
P 7→ N(P ) (called the Gauss map) different from the constant map, so we are interested in
its derivative (or rather, differential). This will lead us to the concept of second fundamental
form, which is a quadratic form associated to S at the point P .

5.1. Orientability and the Gauss map. Let S be a regular surface in R
3.

Definition 5.1.1. (a) A normal vector to S at P is a vector perpendicular to the plane
TPS. If it has length 1, we call it a normal unit vector.

(b) A (differentiable) normal unit vector field on S is a way of assigning to each P in S a

unit normal vector N(P ), such that the resulting map N : S → R
3 is differentiable1.

At any point P in S there exist two normal unit vectors, which differ from each other
by a minus sign. So a normal unit vector field is just a choice of one of the two vectors at
any point P . It is a useful exercise to try to use ones imagination to visualize normal unit
vector fields on surfaces like the sphere, the cylinder, the torus, the graph of a function of
two variables etc. Surprinsingly enough, such vector fields do not exist on any surface. An
interesting example in this respect is the Möbius strip, see Figure 1: assuming that there
exists a normal unit vector field on this surface and trying to represent it, we can easily see
that it has a jump at some point.

Figure 1. The Möbius strip and a tentative to construct
a normal unit vector field on it.

Definition 5.1.2. A surface S is said to be orientable if there is a differentiable unit normal
vector field N on it. If so, then (the endpoint of) N is on the unit sphere S2 and the map

N : S → S2

is called the Gauss map of S (see also Figure 2).

1We haven’t defined differentiability of maps from S to R3. Like in Section 3.2, N : S → R
3 is differentiable

means that for any local parametrization (U,ϕ) of S, the map N ◦ϕ : U → R
3 is differentiable. Equivalently,

any of the three components of N is a differentiable function from S to R.
1
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Figure 2. To each P in S the Gauss map assigns a point
N(P ) on the unit sphere S2.

Remarks. 1. For the original definition of orientability, one can see [dC], Section 2-6. or
[Gr-Abb-Sa], Section 11.1 (our Definition 5.1.2 above is equivalent to the original one, but
more handy than that one). Intuitively, a surface is orientable if it is possible to define
counterclockwise rotations on small pieces of S in a continuous manner.

2. Besides the Möbius strip, there are other examples of non-orientable surfaces, more
notably the Klein bottle and the real projective space. These are nicely described in [Gr-
Abb-Sa], Chapter 11 (but they are not regular, as they have self-intersections). One can
see that none of these examples is a compact regular surface (by the way: give examples
of compact surfaces; is the Möbius strip compact? why?). Indeed a fairly recently proved
result says that any compact regular surface is orientable (Samelson 1969).

Example. If (U, ϕ) is a local parametrization of an arbitrary surface, then ϕ(U) is orientable.
Indeed, we can define

N(ϕ(Q)) :=
1

‖ϕ′
u(Q)× ϕ′

v(Q)‖ϕ
′
u(Q)× ϕ′

v(Q),

for Q in U . In other words, any surface is locally orientable. We also deduce that the graph
of a function of two variables is an orientable surface (see also Corollary 3.1.3).

From now on we will make the following assumption.

Assumption. The surface S is orientable and N : S → S2 is a Gauss map 2.

We are interested in the differential of the mapN : S → S2 at a point P in S. By Definition
3.3.4, this map goes from TPS to TN(P )S

2. Since both tangent planes are perpendicular to
N(P ), they must be equal. So the differential of N at P is

d(N)P : TPS → TPS,

that is, a linear endomorphism of TPS. It is defined by

d(N)P (w) =
d

dt
|0N(α(t)),

for any w in TPS of the form w = α′(0), where α is a curve α : (−ǫ, ǫ) with α(t) in S,
α(0) = P .

Examples. 1. The plane Π. We choose a unit vector N perpendicular to Π. The Gauss
map is N(P ) = N (constant), for any P in Π. Its differential is

d(N)P (w) = 0,

for all w in TPS.

2. The sphere S2. A unit normal vector to S2 at P = (x, y, z) is (x, y, z) (since the tangent
plane to S2 at P is perpendicular to OP , see also Figure 3).
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P

N(P)= -P

Figure 3. Two copies of a unit normal vector at P to
the sphere S2; the third vector is N(P ).

Rather than assigning to P the point P itself, we prefer to assign its negative, that is

N(x, y, z) = (−x,−y,−z),

for all P = (x, y, z) in S2. Take w = α′(0) in TPS, where α(t) = (x(t), y(t), z(t)). Then

d(N)P (w) =
d

dt
|0(−x(t),−y(t),−z(t)) = −α′(0),

so d(N)P (w) = −w, for all w in TPS.

3. The cylinder C. Consider again the example on page 2, Chapter 4 of the notes. See
also Figure 4.

x

y

z

P=(x,y,z)

(-x,-y,0)

Figure 4. The Gauss map of the cylinder C.

We choose
N(x, y, z) = (−x,−y, 0),

for all (x, y, z) on C. We deduce easily that if P is in C and

w = α′(0) = (x′(0), y′(0), z′(0))
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is in TPS, then

d(N)P (x
′(0), y′(0), z′(0)) = (−x′(0),−y′(0), 0).

In other words, if v is in TPS parallel to the xy plane (that is v = (λ, µ, 0) for some numbers
λ and µ), then

d(N)P (v) = −v.

If w in TPS is parallel to the z axis, then

d(N)P (w) = 0.

So the eigenvalues of d(N)P are −1 and 0.

We will see that for any surface S and any point P , the eigenvalues of the map d(N)P are
real numbers. The reason is that d(N)P is a selfadjoint operator. The goal of the next section
is to give the required background concerning the latter notion. This can be considered as
a continuation of Section 4.1 of the notes.

5.2. Quadratic forms (part II). This time we consider a two dimensional vector subspace
V of R3.

Lemma 5.2.1. Let Q be an arbitrary quadratic form on V . Then there exists an orthonormal
basis3 e1, e2 of V such that for any v = xe1 + ye2 in V we have

Q(v) = λ1x
2 + λ2y

2.

Here the numbers λ1 and λ2 have the following descriptions:

λ1 = max{Q(v) | v in V, ‖v‖ = 1}
λ2 = min{Q(v) | v in V, ‖v‖ = 1}.

Proof. The subspace {v in V | ‖v‖ = 1} is compact. The restriction of Q to it is continuos,
hence it must have a maximum point, call it e1. We also denote

λ1 = Q(e1).

We take e2 in V , ‖e2‖ = 1, e2 perpendicular to e1 and we denote

λ2 = Q(e2).

We show that B(e1, e2) = 0. Indeed, for any t in R, the vector (cos t)e1 + (sin t)e2 has
length 1, hence the function

f(t) = Q((cos t)e1 + (sin t)e2) = cos2 tB(e1, e1) + sin 2tB(e1, e2) + sin2 tB(e2, e2)

has a maximum at t = 0. This implies f ′(0) = 0, so

B(e1, e2) = 0.

The only thing which still needs to be shown is that e2 is a minimum point of Q on
{v in V | ‖v‖ = 1}. Indeed, for any v = xe1 + ye2 in V with x2 + y2 = 1 we have

Q(v) = Q(e1)x
2 +Q(e2)y

2 ≥ Q(e2)(x
2 + y2) = Q(e2),

where we have used that Q(e1) ≥ Q(e2). The lemma is proved. �

Definition 5.2.2. A linear endomorphism A of V is called self-adjoint if

A(v) · w = v · A(w),
3By this we mean that e1 · e2 = 0, ‖e1‖ = ‖e2‖ = 1.
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for all v, w in V . Equivalently, the function B : V × V → R given by

B(v, w) = A(v) · w,
for all v, w in V , is a symmetric bilinear form on V .

Let Q : V → R, Q(w) = A(w) · w, w in W , be the associated quadratic form.

Theorem 5.2.3. Let A be a self-adjoint linear endomorphism of V . Then there exists an
orthonormal basis e1, e2 of V and two numbers λ1, λ2 with

A(e1) = λ1e1, A(e2) = λ2e2.

The numbers λ1, λ2 are the maximum, respectively minimum of Q(v) = A(v) · v, for v in V ,
‖v‖ = 1.

Proof. We consider the quadratic form Q(v) = A(v) · v, v in V and we use the previous
lemma. There exists an orthonormal basis e1, e2 with

Q(xe1 + ye2) = λ1x
2 + λ2y

2.

Moreover, we have shown that B(e1, e2) = 0, which means

A(e1) · e2 = 0,

so we must have A(e1) = αe1, for some number α. But then we have

α = A(e1) · e1 = Q(e1) = λ1.

We have shown that

A(e1) = λ1e1.

Similarly we show that

A(e2) = λ2e2.

The theorem is proved. �

Remark. The numbers λ1, λ2 are the eigenvalues of A. They are uniquely determined by
A. By contrary, the vectors e1, e2 are not unique. For example, if A(v) = v, for all v in V ,
then λ1 = λ2 = 1, but e1, e2 can be any pair of orthonormal vectors.

We are now ready to get back to the Gauss map of a surface and its differential.

5.3. The second fundamental form. Again S is a regular orientable surface and N :
S → S2 a Gauss map.

5.3.1. Theorem. For any point P in S, the linear endomorphism d(N)P of TPS is self-
adjoint.

Proof. We consider a local parametrization (U, ϕ) of S with ϕ(Q) = P for some Q in U .
Set

Q = (u0, v0).

The vectors ϕ′
u(Q), ϕ′

v(Q) are a basis of TPS. It is sufficient4 to show that

(1) d(N)P (ϕ
′
u(Q)) · ϕ′

v(Q) = ϕ′
u(Q) · d(N)P (ϕ

′
v(Q)).

By the definition of the differential map, we have

d(N)P (ϕ
′
u(Q)) =

d

du
|u0

N(ϕ(u, v0)) = (N ◦ ϕ)′u(Q),

and similarly

d(N)P (ϕ
′
v(Q)) = (N ◦ ϕ)′v(Q).

4Why?
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We note that
N ◦ ϕ · ϕ′

v = 0 everywhere on U

which implies (by taking partial derivative with respect to u)

(N ◦ ϕ)′u · ϕ′
v +N ◦ ϕ · ϕ′

vu = 0

so
(N ◦ ϕ)′u(Q) · ϕ′

v(Q) = −N(ϕ(Q)) · ϕ′
vu(Q).

Similarly,
(N ◦ ϕ)′v(Q) · ϕ′

u(Q) = −N(ϕ(Q)) · ϕ′
uv(Q).

Equation (1) follows from the fact that

ϕ′
uv(Q) = ϕ′

vu(Q).

�

The quadratic form corresponding to5 −d(N)P is the second fundamental form.

5.3.2. Definition. The second fundamental form of S at P is the quadratic form IIP :
TPS → R given by

IIP (v) = −d(N)P (v) · v,
v in TPS.

Our next goal is to give geometric interpretations to the number IIP (v).

5.3.3. Definition. Let α : (−ǫ, ǫ) → R
3 be a curve whose trace is contained in S such that

α(0) = P , parametrized by arc length. The number

κn = α′′(0) ·N(P )

is called the normal curvature of α at P with respect to S. Alternatively, we have

κn = κ cosφ

where κ is the curvature of α at the point P and φ is the angle between the vectors N(P )
and α′′(0).

We can also see that κn is the length of the orthogonal projection of α′′(0) to the straight
line determined by N(P ), possibly with a negative sign, if the angle φ is obtuse (see also
Figure 5).

The following result gives a geometric interpretation of the second fundamental form.

5.3.4. Theorem. Let α be a curve like in Definition 5.3.3. Then we have

κn = IIP (α
′(0)).

Notation. If P is in S and v in TPS with ‖v‖ = 1, the number

κn(v) := IIP (v)

is called the normal curvature along v. This is the normal curvature of any curve α like in
Definition 5.3.3. whose tangent vector at P is α′(0) = v.

Proof of Theorem 5.3.4. Denote N(s) := N(α(s)), for s in (−ǫ, ǫ). We have

N(s) · α′(s) = 0

which implies by taking derivatives

N ′(s) · α′(s) +N(s) · α′′(s) = 0.

5It will become immediately clear why did we want to take the negative sign. By the way, the endomor-
phism −d(N)P of TPS is called the shape operator, or the Weingarten map of S at P .
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Figure 5. The normal curvature interpreted as a pro-
jection. Technical detail: the vector α′(0) is “behind” the
surface, that’s why we can’t “see” it.

For s = 0 we take into account that

N ′(0) =
d

ds
|0N(s) = d(N)P (α

′(0))

and obtain6

−IIP (α
′(0)) + κn = 0

which implies the desired equality. �

Take v in TPS with ‖v‖ = 1. Among all curves α like in Definition 5.3.3 with α′(0) = v, a
“natural” one is the intersection of the surface S with the plane through P containing N(P )
and v. Denote the latter by Π, and note it is an affine plane. Thus the trace of the curve
mentioned above is the intersection S ∩ Π; it is called the normal section along v (see also
Figure 6).

Let us parametrize the normal section by its arc length (starting at P ) and denote by
α the resulting parametrized curve. The vector α′(0) is parallel to (i.e. collinear with) v:
indeed, it is parallel to both TPS and Π, and the intersection of these two planes is the line
through P of direction v. Since ‖α′(0)‖ = ‖v‖ = 1, we have α′(0) = ±v. If necessary, one
reverses the parametrization of α in order to get the + sign, that is

α′(0) = v.

Denote by n the normal vector7 to α and κ the curvature of α at α(0). The vector α′′(0) = κn

is parallel to the plane Π, so n is parallel to Π and perpendicular to v = α′(0), which implies
n = ±N(P ). We deduce that the normal curvature of this curve is

κn = α′′(0) ·N(P ) = (κn) ·N(P ) = κ(n ·N(P )) = ±κ.

Let’s record the result:

For any v in TPS with ‖v‖ = 1, the number IIP (v) equals the curvature of the normal section
along v at the point P , up to a possible negative sign.

Informally speaking, IIP (v) is telling you how curved will be your road if you go in the di-
rection indicated by v.

6It is the right moment to understand why did we take the negative sign in Definition 5.3.2.
7In Ch. 2, the normal vector to a curve at a point is denoted by N ; right now, N already has a meaning,

so we need to choose a different notation, which will be n.
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N(P)=n

P

S

v

α(s)

Π

Figure 6. The normal section along v is the curve α

(note that the latter is both on the surface S and con-
tained in the plane Π).

We note that sometimes we can get equality between κ and κn by choosing the Gauss map
appropriately. For instance, if the surface lies on one side of the (affine) tangent plane, we
choose N to point towards this side. The normal vector n = 1

κ
α′′(0) to the normal section

points towards the concave side of the curve, thus it equals N(P ) (compare to the situation
represented in Figure 6, see also Example 2 below).

Examples. 1. The plane Π revisited. Let Π be an arbitrary plane, P a point on it and v

a vector in TPΠ (by the way, this is the plane parallel to Π going through the origin). To
compute IIP (v), we consider the normal section along v. This is a straight line. We know
from Chapter 1 that its curvature is 0. We deduce that

IIP (v) = 0, for all v in TPΠ.

We actually knew this, see Example 1 on page 2.

2. The sphere S2 revisited. See Figure 8.

Again, to determine IIP (v), we find the normal section along v. This is a circle with centre
at O. The curvature of the latter is 1. Because of the choice of N , we have N = n (not its
negative!), thus

IIP (v) = 1.

This was also known, because

IIP (v) = −d(N)P (v) · v = v · v = 1.

3. The cylinder revisited. Look again at Example 3, page 3. At the end of that discussion
we distinguished two types of vectors, denoted v and w. We can easily compute IIP (v) and
IIP (w), because the corresponding normal sections are a straight line, respectively a circle.
But what can we do to find IIP of an arbitrary tangent unit vector? The normal section
is an ellipse, and in principle we can compute its curvature. However, there exists a much
simpler method, which will be described in what follows.
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Π

P

v

N(P)

Figure 7. The normal section along v is the straight
line through P which is parallel to v.

P
N(P)

O

v

=n

Figure 8. The normal section along v is a big circle on
the sphere.

By Theorem 5.3.1, the map −d(N)P : TPS → TPS is self-adjoint. By Theorem 5.2.3, it
is important to consider the numbers −d(N)P (v) · v = IIP (v), where v is in TPS, ‖v‖ = 1.
More precisely, let us consider the extrema of the second fundamental form on the unit circle
in TPS, as follows

k1 := max{IIP (v) | v in TPS, ‖v‖ = 1},
k2 := min{IIP (v) | v in TPS, ‖v‖ = 1}.

Definition 5.3.5. The numbers k1 and k2 defined above are the principal curvatures of S
at P . (Note that they are the eigenvalues of −d(N)P : TPS → TPS.) A vector e in TPS

with the property

d(N)P (e) = −k1e or d(N)P (e) = −k2e

is called a principal vector.
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We know by Theorem 5.2.3 that there exist two vectors e1, e2 in TPS such that

d(N)P (e1) = −k1e1, d(N)P (e2) = −k2e2.

Moreover, ‖e1‖ = ‖e2‖ = 1 and e1 is perpendicular to e2. As a direct consequence of Lemma
5.2.1, we deduce as follows.

Theorem 5.3.6. If v is in TPS with ‖v‖ = 1, having the form

v = (cos θ)e1 + (sin θ)e2

(see also Figure 9), then

IIP (v) = k1 cos
2 θ + k2 sin

2 θ.

The last equation is known as Euler’s formula.

ϑ

!

!

"

#  S
P

1

2

O

Figure 9. We have v = (cos θ)e1 + (sin θ)e2.

Examples. 1. If we look again at the examples on page 3, we see that

• at any point P of the plane we have k1 = k2 = 0 and any unit tangent vector is a
principal vector

• at any point P of the sphere S2 we have k1 = k2 = 1 and any unit tangent vector is
a principal vector

• at any point P of the cylinder we have k1 = 1 and k2 = 0 (see also Figure 10). The
principal vectors are e1 and e2. We can use Euler’s formula to compute IIP (v) for any
v in TPS with ‖v‖ = 1. More precisely, for v like in Figure 9, we have IIP (v) = cos2 θ.

2. Let us consider the parabolic hyperboloid, which is the graph of the function h(x, y) =
y2−x2. In Figure 11, the two parabolas in the right hand side picture have a third significance:
they are the normal sections along the principal directions through O. Their normal vectors
at O are N(O), respectively −N(O) (compare with the discussion on the top of page 8).

Exercise. IfH denotes the hyperboloid, determine TOH, d(N)O, IIO, the principal curvatures
at O, and two principal vectors at O.

The notions defined below are relevant for the study of surfaces, as we will see later on.

Definition 5.3.7. If k1 and k2 are the principal curvatures of S at P , then

• the Gauss curvature of S at P is

K(P ) = k1k2
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x

y

z

$

$

1

2

P

Figure 10. The principal vectors at P are e1 and e2.

Figure 11. The hyperbolic paraboloid has the
parametrization ϕ(u, v) = (u, v, v2 − u2). The two
parabolas in the right hand side image are the coordi-
nate curves through O (which is their intersection point);
they also represent the intersections of the surface with
the coordinate planes xz and yz. Namely, the lower
parabola is in the xz plane, the upper one in the yz

plane. The origin is a “saddle” point.

• the mean curvature of S at P is

H(P ) =
1

2
(k1 + k2).
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Alternatively, we can express these in terms of the linear endomorphism d(N)P of TPS as
follows:

K(P ) = det(d(N)P ), H(P ) = −trace(d(N)P ).

5.4. The second fundamental form in local coordinates. We have already mentioned
that if (U, ϕ) is a parametrization of a surface, then ϕ(U) is orientable via the Gauss map

(2) (N ◦ ϕ)(Q) :=
1

‖ϕ′
u(Q)× ϕ′

v(Q)‖ϕ
′
u(Q)× ϕ′

v(Q),

for Q in U . The main goal of this section is to give formulas for the quantities defined in the
previous section in terms of ϕ.

Consider the differential map

d(N)P : TPS → TPS,

where P = ϕ(Q), Q = (u0, v0) in U . We can easily determine the coefficients of the second
fundamental form IIP with respect to the basis ϕ′

u(Q), ϕ′
v(Q). Let us denote them by e, f,

and g. By Section 4.1, Equation (1), they actually are

e = −d(N)P (ϕ
′
u(Q)) · ϕ′

u(Q) = (N ◦ ϕ)(Q) · ϕ′′
uu(Q)

f = −d(N)P (ϕ
′
u(Q)) · ϕ′

v(Q) = −d(N)P (ϕ
′
v(Q)) · ϕ′

u(Q) = (N ◦ ϕ)(Q) · ϕ′′
uv(Q)(3)

g = −d(N)P (ϕ
′
v(Q)) · ϕ′

v(Q) = (N ◦ ϕ)(Q) · ϕ′′
vv(Q)

where we have used the product rule and the fact that (N ◦ϕ)·ϕ′
u = 0 and (N ◦ϕ)·ϕ′

v = 0 (see
similar computations in the proof of Theorem 5.3.1 above). Combined with (2), the previous
three equations give e, f, g in terms of ϕ and its partial derivatives of order one and two.

Next we determine the matrix of the linear map d(N)P . This is
(

a11 a12
a21 a22

)

where the numbers aij are determined by

d(N)P (ϕ
′
u(Q)) = a11ϕ

′
u(Q) + a21ϕ

′
v(Q)

d(N)P (ϕ
′
v(Q)) = a12ϕ

′
u(Q) + a22ϕ

′
v(Q)

The previous two equations combined with (3) give as follows:

− f = (a11ϕ
′
u(Q) + a21ϕ

′
v(Q)) · ϕ′

v(Q) = a11F + a21G

− f = (a12ϕ
′
u(Q) + a22ϕ

′
u(Q)) · ϕ′

u(Q) = a12E + a22F

− e = (a11ϕ
′
u(Q) + a21ϕ

′
v(Q)) · ϕ′

u(Q) = a11E + a21F

− g = (a12ϕ
′
u(Q) + a22ϕ

′
u(Q)) · ϕ′

v(Q) = a12F + a22G

In matrix notation, the last four equations give
(

a11 a21
a12 a22

)(

E F

F G

)

= −
(

e f

f g

)

⇒
(

a11 a21
a12 a22

)

= −
(

e f

f g

)(

E F

F G

)−1

.

Because
(

E F

F G

)−1

=
1

EG− F 2

(

G −F

−F E

)
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we deduce

a11 =
fF − eG

EG− F 2
, a12 =

gF − fG

EG− F 2

a21 =
eF − fE

EG− F 2
, a22 =

fF − gE

EG− F 2

These are called the Weingarten equations.

We are also interested in the Gauss, respectively mean curvature (see Definition 5.3.7).
They are

K = det(d(N)P ) = a11a22 − a12a21 H = −trace(d(N)P ) = −(a11 + a22).

After making the calculations we obtain

K =
eg − f 2

EG− F 2
(4)

H =
eG− 2fF + gE

2(EG− F 2)
.

Finally, we can determine the principal curvatures. These are the eigenvalues of −d(N)P ,
that is, the eigenvalues of the matrix −(aij)1≤i,j≤3. They are the roots of the polynomial

det

(

λI +

(

a11 a12
a21 a22

))

= λ2 − 2λH +K.

We obtain

k1 = H +
√
H2 −K, k2 = H −

√
H2 −K.

Historical note. The notions and results presented in this chapter were discovered during
the centuries in a totally different order. I would like to give here a short guideline concerning
this. It has always been clear that in order to measure the “curvature” of a surface at a
point one needs to measure the curvature of various normal sections. This led naturally
to the notion of normal curvature in a prescribed tangent direction, like in Figure 6. A
remarkable result was found by Euler in 1760: there exists two perpendicular directions e1,
e2 in the tangent plane such that the normal curvature in the direction of e1 is minimal and
the normal curvature in if the direction of e2 is maximal; moreover, the normal curvature in
an arbitrary direction v is given by what we call now Euler’s formula (see Theorem 5.3.6).
A few years later, around 1776, Meusnier realized that we can also use arbitrary curves
α : (−ǫ, ǫ) → S (parametrized by arc length) with α(0) = P . More precisely, he showed
that of κ is the curvature of α at P and φ the angle between the N(P ) and α′′(0), then
the number κ cosφ is the same for all curves α with the same tangent vector at P , being
equal to the normal curvature of S along α′(0). Fundamentally new ideas were brought by
Gauss, in his paper entitled Disquisitiones generales circa superficies curvas, published in
1827. Among the main contributions of that work we mention as follows:

• he defined the “Gauss map” and the second fundamental form and noted that the
results discovered by his predecessors can be proved by using these instruments

• he proved that the “Gauss curvature” K(P ) depends only on the coefficients E, F,G

of the first fundamental form (this is a striking result, if we compare it with Equation
(4))

• he discovered a formula for the sum of the angles of a triangle on a surface.

The last two items will be discussed in the remaining of our course.

For more historical details, one can read Chapter 3 of Spivak’s monograph [Sp].
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