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The equivariant cohomology module associated to an action of a compact Lie group G

has a canonical structure of a H
∗(BG) module. (The coefficient field for cohomology is here

R.) One is especially pleased when this module is free: indeed, this happens for certain
classes of group actions that have been extensively investigated over the past two to three
decades1. However, this nice feature is very rare, as one can easily see in concrete situations.
Instead of being free, one can require the above-mentioned equivariant cohomology module
to satisfy a weaker condition, like for instance the so-called Cohen-Macaulay property. This
appears to be a natural requirement: for instance, all transitive group actions fit into this
class, even though only few of them satisfy the freenes condition above. The relevance of
the Cohen-Macaulay condition in the context of equivariant cohomology was first noticed
by Bredon in [Br]. More recently, this topic was investigated by Franz and Puppe [Fr-Pu],
Goertsches and Töben [Go-Tö], Goertsches and Rollenske [Go-Ro], and Goertsches and Mare
[Go-Ma]. The goal of this note is to provide the minimal background in commutative algebra
needed in order to understand these papers. The treatment is sketchy: for instance, very
few results are proved. However, the interested reader can find the details by following the
bibliographical references which I have tried to make precise.

1. Modules over Noetherian local rings and their Krull dimension

1.1. Rings. All rings will be commutative with unit. If R is such a ring, an ideal p is prime
if p �= R and xy ∈ p ⇒ x ∈ p or y ∈ p; equivalently, the ring R/p is an integral domain. We
set Spec(R) := {p ⊂ R : p is a prime ideal}. An ideal m is maximal if there is no ideal a
such that m ⊂ a ⊂ R (strict inclusion); equivalently, R/m is a field. Hence a maximal ideal
is automatically prime (see [At-Mc, p. 3]). Thus, any ring has at least one prime ideal (since
it has a maximal one). A ring R is called local if it has a unique maximal ideal. Such rings
can be constructed as follows: take p ∈ Spec(R), and denote by Rp the ring of fractions of
R with respect to R \ p (note that the latter set is a multiplicative subset of R); then Rp

is a local ring, called the localization of R at p: the (only) maximal ideal consists of the
“fractions” a/s with a ∈ p and s ∈ R \ p, see [At-Mc, p. 38].

A ring R is Noetherian if it satisfies the ascending chain condition (a.c.c.) for ideals,
i.e. any chain a1 ⊆ a2 ⊆ . . . is eventually stationary; equivalently, every ideal in R is finitely

Date: May 15, 2013 (revised version: error fixed in the proof of Proposition 3.3).
1Most notably for Hamiltonian group actions on compact symplectic manifolds.
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2 A.-L. MARE

generated2 see [At-Mc, p. 80]. For example, any PID is a Noetherian ring (recall that a
principal ideal domain PID is an integral domain in which every ideal is principal, that is, of
the form (r), with r ∈ R). In particular, one obtains the following concrete examples : any
field K, the ring K[x] of polynomials with coefficients in a field K, the ring Z etc. Hilbert’s
Basis Theorem says that if R is Noetherian, then so is R[x1, . . . , xn]; in particular, if K is a
field, then K[x1, . . . , xn] is a Noetherian ring.

The (Krull) dimension of an arbitrary ring R, denoted dimR, is the supremum of the
length of all strictly ascending chains of prime ideals in R. Recall that, by convention, if the
chain is p0 ⊂ p1 ⊂ . . . ⊂ pn (strict inclusions), then the length is n.

Examples.

• If K is a field, then dimK = 0, since (0) is the only prime ideal.

• If K is a field, then dimK[x1, . . . , xn] = n. Proofs can be found in [Ma1, p. 83] and [Se,
p. 56]. I just mention that a strictly ascending chain of length n is (0) ⊂ (x1) ⊂ (x1, x2) ⊂
. . . ⊂ (x1, . . . , xn−1).

• dimZ = 1, because the only strictly ascending chains of prime ideals are (0) ⊂ (p), where p
is a prime integer. In general, any PID has dimension 1, because any prime ideal is maximal,
see [At-Mc, p. 5].

It turns out that if R is also local, then dimR < ∞, see [At-Mc, Corollary 11.11]. Note
that, in general, the dimension of a Noetherian ring may be infinite, see [At-Mc, p. 126].

1.2. Modules. An R-module M is Noetherian if it satisfies the ascending chain condition
(a.c.c.) for submodules, i.e. any chain M1 ⊆ M2 ⊆ . . . is eventually stationary; equivalently,
every submodule of M is finitely generated, see [At-Mc, p. 75].

Proposition 1.1. ([At-Mc, p. 75]) (a) Let 0 → M
� → M → M

�� → 0 be a short exact
sequence of R-modules. Then M is Noetherian if and only if M � and M

�� are Noetherian.

(b) Consequently, submodules and quotients of Noetherian modules are Noetherian modules
as well.

The (Krull) dimension of M is by definition dimM := dimR/Ann(M), where Ann(M) =
{r ∈ R : rM = {0}} is the annihilator of M (note that this is an ideal in R).

Some nice results about dimension can be obtained in the case when R is a Noetherian
local ring and M a finitely generated R-module, see [Ma1, p. 73] and [At-Mc, p. 119]. I will
only collect a few things from there.

Proposition 1.2. If (R,m) is a Noetherian local ring and M a finitely generated R-module,
then:

(a) For any n ≥ 0, the R-module M/mn
M has finite length3.

2Note that every ideal is also a Noetherian ring, because it is an R-submodule of R, see Proposition 1.1
below.

3Recall that the length of an A-module N is the length of a composition series of N , that is, a number
�(N) =: n for which there exists a sequence (0) = N0 ⊂ N1 ⊂ . . . ⊂ Nn = N , where all inclusions are
strict and no extra modules can be inserted (equivalently, any Ni/Ni−1 is simple, i.e. has no non-trivial
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(b) For n sufficiently large, χ(M ;n) := �(M/mn
M) is a polynomial in n, of degree smaller

than the least number of generators of m.

The polynomial χ(M ;n) is called the Hilbert polynomial of M relative to4 m. One is
especially interested in its degree: set

d(M) := degχ(M ;n).

Proposition 1.3. ([Ma1, Theorem 17, p. 76]) We have d(M) = dim(M). Consequently,
dim(M) < ∞.

Proposition 1.4. ([Ma1, p. 74]) If 0 → M
� → M → M

�� → 0 is an exact sequence of
finitely generated R-modules, then d(M) = max{d(M �), d(M ��)}. Consequently, dim(M) =
max{dim(M �), dim(M ��)}.

2. Depth; Cohen-Macaulay modules

2.1. Depth. Let M be a module over a ring R. A sequence r1, . . . , rm ∈ R is called M-
regular if5 ri is not a zero-divisor on M/(r1, . . . , ri−1)M , for all 1 ≤ i ≤ r. If so, then all
inclusions in the sequence (r1) ⊂ (r1, r2) ⊂ . . . ⊂ (r1, . . . , rm) are strict. Let a be an ideal in
R. The M -regular sequence r1, . . . , rm with ri ∈ a, 1 ≤ i ≤ m, is said to be maximal in a if
there is no rm+1 ∈ a such that r1, . . . , rm, rm+1 is M -regular; in other words, all elements of
a are zero-divisors on M/(r1, . . . , rm)M .

Theorem 2.1. (see6 [Ma1, p. 102]) Let M be a finitely generated module over a Noetherian
ring R and a ⊂ R an ideal. Then all maximal M-regular sequences in a have the same length
n, which is given by7

n = min {i : ExtiR(R/a,M) �= 0}.

Definition 2.2. For R, a, and M as in the theorem, the common length of all maximal
M-regular sequences in a is called the a-depth of M , denoted depth a(M).

Definition 2.3. If (R,m) is a local Noetherian ring and M a finitely generated R-module,
then the depth of M is

depth (M) := depth m(M).

By Theorem 2.1,

(2.1) depth(M) = min {i : ExtiR(R/m,M) �= 0}.

submodules). In fact, all composition series have the same number of terms, which can be finite or infinite.
See [At-Mc, pp. 76-77]. See also [Ma1, p. 72] for characterizations of modules of finite length.

4The actual construction is slightly more general : it involves a choice of an ideal contained in m, called
“ideal of definition” I in [Ma1], resp. “m-primary ideal” in [At-Mc]. Eventually it is shown that the number
d(M) obtained this way is independent on this choice. What I describe here is a correct definition of d(M),
which is sufficient for my goals.

5For i = 1, the condition is: r1 is not a zero-divisor on M . For i = m, the condition is M/(r1, . . . , rm)M �=
{0}.

6See also [Br-He, Theorem 1.2.5].
7The functor Ext (along with Tor) is defined nicely in [Ma2, Appendix B, pp. 274-282].
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The following inequalities are useful:

Proposition 2.4. (see [Br-He, Prop. 1.2.9]) Let (R,m) be a local Noetherian ring and 0 →
M

� → M → M
�� → 0 an exact sequence of finitely generated R-modules. Then:

(a) depth (M) ≥ min{depth (M �), depth (M ��)},
(b) depth (M �) ≥ min{depth (M), depth (M ��) + 1},
(c) depth (M ��) ≥ min{depth (M �)− 1, depth (M ��)}

Proof’s Main Idea. The short exact sequence induces the following long exact sequence (see
[Ma2, pp. 279-280]):

. . . → Hom(R/m,M
�) → Hom(R/m,M) → Hom(R/m,M

��) →
→ Ext1(R/m,M

�) → Ext1(R/m,M) → Ext1(R/m,M
��) →

→ Ext2(R/m,M
�) → Ext2(R/m,M) → Ext2(R/m,M

��) → . . .

The inequalities follow readily from the exactness of this sequence and Equation (2.1). �

2.2. Proof of depthM ≤ dimM . In what follows I would like to justify this inequality.
To this end I first need the following obvious reformulation of the definition of the Krull
dimension:

dimR = sup {coht(p) : p ∈ Spec(R)},
where8 coht(p) denotes the supremum of n for which there exists a sequence p ⊂ p1 ⊂ . . . ⊂ pn
of strict inclusions of prime ideals. I get immediately that for any p ∈ Spec(R) one has

dimR/p = coht(p).

Moreover, if M is an R-module, then

dimM = sup {coht(p) : p ∈ V (Ann(M))},
where V (Ann(M)) consists of all p ∈ Spec(R) with Ann(M) ⊂ p. Note that in the above
definition it is sufficient to consider p ∈ V (Ann(M)) that are minimal, i.e., there is no
p� ∈ Spec(R) with Ann(M) ⊂ p� ⊂ p.

Proposition 2.5. Assume that R is Noetherian and M is finitely generated.

(a) One has

V (Ann(M)) = Supp(M)
def .
= {p ∈ Spec(R) : Mp �= 0}.

(b) One has 9 Supp(M) ⊇ Ass(M). Any minimal element of Supp(M) is in Ass(M).

(c) The set Ass(M) is finite.

(d) The union of all ideals that belong to Ass(M) is the set of all zero-divisors for M .

8Also recall that the height of p is the supremum of n for which there exists a sequence p ⊃ p1 ⊃ . . . ⊃ pn
of strict inclusions of prime ideals and dimR = sup {ht(p) : p ∈ Spec(R)}.

9Recall that Ass(M), or “the (set of) associated primes of M”, consists of all p ∈ Spec(R) which are of
the form p = Ann(x), x ∈ M . See [Ma1, p. 49].
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Proof. (a) See [Ma1, Exercice 2, p. 16].

(b) See [Ma1, Theorem 9, p. 50].

(c) See [Ma1, Proposition 7.G, p. 52].

(d) See [Ma1, Corollary 2, p. 50]. �

I am getting closer to the actual goal of this section with the following lemma, which is
the heart of the matter:

Lemma 2.6. Let (R,m) be a Noetherian local ring and M a finitely generated R-module. If
r ∈ m is not a zero divisor, then

dimM/rM = dimM − 1.

Proof of10 dimM/rM < dimM . Let p1, . . . , pt be the elements of Spec(R) which contain
Ann(M) and have the property that coht(p1) = . . . = coht(pt) = dim(M); note that any
other p ∈ Spec(R) which contains Ann(M) has coht(p) < dimM . The ideals p1, . . . , pt are
minimal in V (Ann(M)), hence, by Proposition 2.5, they lie in Ass(M), thus r is not contained
in any of them. I obviously have Ann(M) ⊂ Ann(M/rM). When calculating dimM/rM , I
consider the coht of p ∈ Spec(R) with Ann(M/rM) ⊂ p, which implies r ∈ p; consequently,
any such p contains Ann(M), but is not among p1, . . . , pt, hence coht(p) < dimM . This
implies dimM/rM < dimM .

For a complete proof of the lemma I refer to [Ma1, Lemma 4, p. 105]. �
I deduce immediately:

Corollary 2.7. Let (R,m) be a Noetherian local ring and M a finitely generated R-module.

(a) If r1, . . . , rm ∈ m is an M-regular sequence, then

dimM/(r1, . . . , rm)M = dimM −m.

(b) Consequently, depth (M) ≤ dim(M).

2.3. Cohen-Macaulay modules.

Definition 2.8. (see [Br-He, p. 57]) Let (R,m) be a local Noetherian ring and M a finitely
generated R-module. One says that M is Cohen-Macaulay (shortly CM) if M = 0 or
depth (M) = dim(M).

To define CM-modules over arbitrary Noetherian rings, one needs localization of modules.
For the definition of this notion I refer to [At-Mc, p. 38]: if M is an R-module and p ⊂ R

an ideal, one constructs Mp, which is a module over the localized ring Rp.

Relevant at this point is that if (R,m) is a local Noetherian ring and M an R-module
then:

• dimM = dimMm

10This is sufficient to achieve the actual goal stated in the title of this subsection: in the spirit of Corollary
2.7, one deduces dimM/(r1, . . . , rm)M ≤ dimM −m, which in turn implies depth (M) ≤ dim(M).
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• depthM = depthMm, where the depths are taken relative to m and the ideal induced
by m, respectively.

(Indeed, the first equality follows immediately from the definition of the dimension of a
module and the exact description of the ideals in Rm, see, e.g., [At-Mc, Corollary 3.13 iv)];
for the second equality, see [Br-He, Proposition 1.5.15 (e)].) Consequently, M is CM iff Mm

is CM. Inspired by this property, one defines:

Definition 2.9. (see [Br-He, p. 57]) Let R be an arbitrary Noetherian ring and M a finitely
generated R-module. One says that M is Cohen-Macaulay if Mm is Cohen-Macaulay over
Rm for any maximal ideal m of R.

Details and results concerning CM modules can be found in [Ma1, Section 16, p. 106], [Se,
p. 83], and [Br-He, Ch. 2, p. 57]. The following result seems to be in none of these books.

Proposition 2.10. Let (R,m) be a local ring and M
�
,M

�� two finitely generated R-modules.
Then M

� ⊕M
�� is CM if and only if both M

� and M
�� are CM of the same dimension.

Proof. 11 First assume that M
� and M

�� are CM of dimension n. Proposition 2.4 for the
exact sequence 0 → M

� → M
� ⊕ M

�� → M
�� → 0 shows that depth (M � ⊕ M

��) ≥ n. I
use Proposition 1.3 for the same short exact sequence and obtain: dim(M � ⊕ M

��) = n.
Consequently,

n ≤ depth (M � ⊕M
��) ≤ dim(M � ⊕M

��) = n,

thus M � ⊕M
�� is CM.

We now prove the converse implication. That is, assume that M
� ⊕ M

�� is CM. Denote
by n its dimension. The short exact sequence 0 → M

� → M
� ⊕M

�� → M
�� → 0 induces the

following long exact sequence:

. . . → Exti−1(R/m,M
�) → Exti−1(R/m,M

� ⊕M
��) → Exti−1(R/m,M

��) →
→ Exti(R/m,M

�) → Exti(R/m,M
� ⊕M

��) → Exti(R/m,M
��) → . . .

Similarly, the short exact sequence 0 → M
�� → M

� ⊕M
�� → M

� → 0 induces the following
long exact sequence:

. . . → Exti−1(R/m,M
��) → Exti−1(R/m,M

� ⊕M
��) → Exti−1(R/m,M

�) →
→ Exti(R/m,M

��) → Exti(R/m,M
� ⊕M

��) → Exti(R/m,M
�) → . . .

Along with Equation (2.1) for M := M
� ⊕M

��, whose depth is n, these sequences imply:

Extn−1(R/m,M
�) = Extn−2(R/m,M

�) = . . . = Ext0(R/m,M
�) = 0

Extn−1(R/m,M
��) = Extn−2(R/m,M

��) = . . . = Ext0(R/m,M
��) = 0.

Thus depth (M �) ≥ n and depth (M ��) ≥ n. On the other hand, from Proposition 1.4, I have
dim(M �) ≤ n and dim(M ��) ≤ n. Thus:

n ≤ depth (M �) ≤ dim(M �) ≤ n,

which shows that M � is CM. Similarly, M �� is CM. �
11This proof was kindly provided to me by Oliver Goertsches.
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3. Graded modules over graded rings

Let us now consider the following situation:

(i) R =
�

j≥0 Rj, RiRj ⊂ Ri+j, for all i, j ≥ 0, R0 = R, and R is a finitely generated
R0-algebra

(ii) M =
�

j≥0 Mj, and RiMj ⊂ Mi+j for all i, j ≥ 0
(iii) M is finitely generated over R.

In the language of [Br-He, Section 1.5], M is a graded module over the graded ring R.
Moreover, the ring R is Noetherian, see [Br-He, Theorem 1.5]. It is also a *local ring, i.e., it
has a graded ideal12, which is the unique maximal graded ideal: concretely, this is

m0 :=
�

j≥1

Rj,

see [Br-He, Example 1.5.14 (b)]. Note that m0 is also maximal among all ideals of R.

Example 3.1. The polynomial ring R = R[x, y] with the usual grading satisfies property (i)
above. We have m0 = (x, y) (the ideal generated by x and y, which consists of all polynomials
without free term). It’s easy to see that m0 is a maximal ideal: as a vector space, the quotient
R[x, y]/(x, y) has dimension 1. The same argument shows that for any two numbers a and
b, the ideal (x+ a, y + b) is also maximal (without being graded, unless a = b = 0).

By definition, the depth of a module of type (i)-(iii) is

depthM := depth m0M.

The following proposition is a useful tool when dealing with dimension and depth:

Proposition 3.2. Let M be an R-module of type (i)-(iii), M �= 0. Then

(a) Mm0 �= {0}
(b) dimM = dimMm0 (in particular, dimM is finite)

(c) depthM = depthMm0, where the depth in the RHS is relative to the unique maximal
ideal of Rm0 (i.e., the one induced by m0).

Proof. (a) The following argument is from [Fr-Pu, Section 4]. By [Ma1, Corollary 1, p. 50],
there exists at least one element p ∈ Ass(M). By [Br-He, Lemma 1.5.6], p is a homogeneous
ideal, hence it is contained in m0. Finally, set p = Ann(x), x ∈ M , and take into account
that the element x/1 in Mm0 is different from 0 (because otherwise x would be annihilated
by an element of R \ m0, which contradicts Ann(x) ⊂ m0, see [At-Mc, Proof of Proposition
3.8]).

(b) The argument used here is taken from [Go-Tö, Proof of Proposition 5.1]. First, from
the definition of dimension,

dimM = sup{dimMm : m ⊂ R maximal ideal}.
12A graded subring (sometimes also called homogeneous subring) of R is a subring S with the property

S =
�

j≥0(S ∩ Rj) which is maximal among all graded ideals. Any such subring is in turn a graded ring

relative to the grading induced by the previous equation.
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Thus, dimMm0 ≤ dimM . Consider now an ideal m ⊂ R which is maximal but not graded.
Let m∗ be the ideal of R generated by the homogeneous elements of m. By [Br-He, Lemma
1.5.6], we have m∗ ∈ Supp(M). By [Br-He, Theorem 1.5.8 (b)], we have dimMm = dimMm∗+
1. Since m∗ is homogeneous and m∗ �= R, we have m∗ ⊆ m0 (since m∗ must be contained in
a maximal graded ideal of R, by the argument used in the proof of [At-Mc, Corollary 1.4]).
In fact, the inclusion of m∗ in m0 is strict, since otherwise we would have m = m0, which is
a contradiction. This implies dimMm∗ < dimMm0 : indeed, if d := dimMm∗ then, by [Br-He,
Theorem 1.5.8 (a)], there exists a chain of prime ideals p0 ⊂ . . . ⊂ pd = m∗. We conclude
that dimMm ≤ dimMm0 , hence dimM ≤ dimMm0 .

(c) The claim follows readily from [Br-He, Theorem 1.5.15 (e)]. �

Consequently, several results involving the dimension and the depth of Noetherian modules
over local rings become valid for modules of the type studied in this section: see for example
Propositions 2.4 (with dim instead of d), 1.4, and 2.10 above, as well as [Go-Ma, Lemma 2.3]
and [Go-Tö, Lemma 5.4] (which can be deduced from [Fr-Pu, Lemma 4.3]; the CM condition
in the context of this section is discussed below). A somehow less obvious result is [Go-Ma,
Lemma 2.5], see also [Go-Ro, Lemma 2.6]: For modules over local rings, the result is the
content of [Se, Proposition 12, Section 4.b], see also [CR, Ch. 16, Proposition 1.9] or [Br-He,
Exercise 1.2.26 (b)]. I would like in what follows to spell out the details of the proof.

Proposition 3.3. Let S be a ring and M an S-module that satisfy the assumptions (i)-(iii)
above. Let R be a graded ring which satisfies condition (i) above. Let ϕ : R → S be a
homomorphism of graded rings. Assume that S is finitely generated relative to the R-module
structure acquired via ϕ. Then

dimR M = dimS M and depth RM = depth SM.

Proof. The first of the two equations above is equivalent to

dimR/(AnnRM) = dimS/(AnnSM).

Observe that AnnRM = ϕ
−1(AnnSM), hence R/(AnnRM) = R/(ϕ−1(AnnSM)) can be

viewed via ϕ as a subring of S/(AnnSM). By hypothesis, the latter ring is finitely generated
as a module over the former one. Hence they have the same dimension: see [Ta-Yu, 3.3.4
and 3.3.5] (and also [Se, Proposition 3, III A]). Note that this argument is quite general:
the technical hypotheses that R and S are Noetherian and local, ϕ respects the grading,
etc., are not used in the proof: we just need to know that M is finitely generated as module
(over S or, equivalently, over R, see [Ta-Yu, Theorem 3.3.4]) and of course, that S is finitely
generated over R.

I will now justify the formula concerning the depth. The method is inspired by the proof of
[CR, Ch. 16, Proposition 1.9]. First note that both depths involved in the equation are finite
numbers. Set m := depth RM . Let r1, . . . , rm ∈ m0 = ⊕j≥1Rj be a maximal regular sequence
relative to R. Since ϕ preserves the grading, the sequence si := ϕ(ri), 1 ≤ i ≤ m, lies in
⊕j≥1Sj. It is clearly M -regular as well. I will now show it is maximal. Assume it isn’t. Then
⊕j≥1Sj contains elements that are not zero-divisors relative to M/(r1, . . . , rm)M . Denote
the latter space by N . It is also equal to M/(s1, . . . , sm)M , hence its R-module structure is
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the one induced by the obvious S-module structure. From the maximality of r1, . . . , rm, the
R-depth of N is 0, hence

Ext0R(R/m0, N) = HomR(R/m0, N) �= 0.

The space in the previous equation can be naturally embedded as an R-submodule into
N : to the homomorphism f : R/m0 → N one assigns f(1 + m0) (recall that the elements
of R/m0 are of the form r + m0, with r ∈ R). The resulting subspace of N is obviously
annihilated by m0. Thus the space N

� := {x ∈ N : rx = 0 for all r ∈ m0} is a non-zero
S-submodule of N . It is clearly a graded such submodule. Its annihilator is m0, hence
dimR N

� = 0. Consequently, dimS N
� = 0. In other words, N � is an Artinian S-module. The

set Ass(N �) is nonempty, see [Ma1, Corollary 1, p. 50]. If p ∈ Ass(N �), then p is a maximal
ideal (use [At-Mc, Proposition 8.1] for the ring R/Ann(N �); alternatively, see [La, Chapter
0, Proposition 0.40]). By [Br-He, Lemma 1.5.6], p is also a graded ideal, hence p = ⊕j≥1Sj.
We conclude that ⊕j≥1Sj annihilates a certain element of N , which is a contradiction. �

I would like now to get back to Proposition 3.2: along with the result proved in Section
2.2, it implies that for any module of type (i)-(iii) one has depthM ≤ dimM . Furthermore,
a such R-module M is CM according to Definition 2.9 above iff Mm0 is CM over Rm0 , that
is, iff depthM = dimM : for a proof, I refer to [Br-He, Exercise 2.1.27] or rather to the
references indicated in [Br-He] on p. 86.

Finally, note that if G is a compact connected Lie group acting of a compact connected
manifold X, then H

∗
G(X) equipped with the canonical structure of H∗(BG)-module satisfies

hypotheses (i)-(iii) above. In fact, the only non-obvious fact is that this module is finitely
generated: this has been proved by Quillen, see [Qu].
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