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Abstract. We observe that the small quantum product of the generalized flag manifold
G/B is a product operation ⋆ on H∗(G/B) ⊗ R[q1, . . . , ql] uniquely determined by the fact
that it is a deformation of the cup product on H∗(G/B), it is commutative, associative,
graded with respect to deg(qi) = 4, it satisfies a certain relation (of degree two), and the
corresponding Dubrovin connection is flat. We had proven in [Ma3] that these properties
alone imply the presentation of the ring (H∗(G/B)⊗R[q1, . . . , ql], ⋆) in terms of generators
and relations. In this paper we use the observation from above to give conceptually new
proofs of other fundamental results of the quantum Schubert calculus for G/B: the quantum
Chevalley formula of D. Peterson [Pe] (see also Fulton and Woodward [Fu-Wo]) and the
“quantization by standard monomials” formula of Fomin, Gelfand, and Postnikov [Fo-Ge-
Po] for G = SL(n, C). The main idea of the proofs is the same as in Amarzaya-Guest
[Am-Gu]: from the quantum D-module of G/B one can decode all information about the
quantum cohomology of this space.
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1. Introduction

Let us consider the complex flag manifold G/B, where G is a connected, simply connected,
simple, complex Lie group andB ⊂ G a Borel subgroup. Let t be the Lie algebra of a maximal
torus of a compact real form of G and Φ ⊂ t

∗ the corresponding set of roots. Consider an
arbitrary W -invariant inner product 〈 , 〉 on t. To any root α corresponds the coroot

α∨ :=
2α

〈α, α〉

which is an element of t, by using the identification of t and t
∗ induced by 〈 , 〉. If {α1, . . . , αl}

is a system of simple roots then {α∨
1 , . . . , α

∨
l } is a system of simple coroots. Consider

{λ1, . . . , λl} ⊂ t
∗ the corresponding system of fundamental weights, which are defined by

λi(α
∨
j ) = δij . The Weyl group W is the subgroup of O(t, 〈 , 〉) generated by the reflections

about the hyperplanes kerα, α ∈ Φ+. It can be shown that W is in fact generated by the
simple reflections s1 = sα1

, . . . , sl = sαl
about the hyperplanes kerα1, . . . , kerαl. The length

l(w) of w is the minimal number of factors in a decomposition of w as a product of simple
reflections.
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2 A.-L. MARE

Let B− ⊂ G denote the Borel subgroup opposite to B. To each w ∈W we assign the Schu-
bert variety Xw = B−.w. The Poincaré dual of [Xw] is an element of1 H2l(w)(G/B), which
is called the Schubert class. The set {σw | w ∈ W} is a basis of H∗(G/B) = H∗(G/B,R),
hence {σs1

, . . . , σsl
} is a basis of H2(G/B). A theorem of Borel [Bo] says that the map

(1) H∗(G/B) → S(t∗)/S(t∗)W = R[{λi}]/IW

described by σsi
7→ [λi], 1 ≤ i ≤ l, is a ring isomorphism (we are denoting by S(t∗)W = IW

the ideal of S(t∗) = R[{λi}] generated by the non-constant W -invariant polynomials).

To any l-tuple d = (d1, . . . , dl) with di ∈ Z, di ≥ 0 corresponds a Gromov-Witten in-
variant 〈·| · |·〉d. To define it, we make the identification H2(G/B,Z) = Zl via the basis
consisting of the two-dimensional Schubert classes, that is, the classes whose Poincaré duals
are σw0s1

, . . . σw0sl
, where w0 denotes the longest element of W . We denote by

(·, ·) : H∗(G/B) ×H∗(G/B) → R

the Poincaré pairing of G/B. To any three Schubert classes σu, σv, σw one assigns the number
denoted by 〈σu|σv|σw〉d, which counts the holomorphic curves ϕ : CP 1 → G/B such that
ϕ∗([CP

1]) = d inH2(G/B) and ϕ(0), ϕ(1) and ϕ(∞) are in general translates of the Schubert
varieties dual to σu, σv, respectively σw. Let us consider the variables q1, . . . , ql. The quantum
cohomology ring of G/B is the space H∗(G/B)⊗R[{qi}] equipped with the product ◦ which
is R[{qi}]-linear and for any two Schubert classes σu, σv, u, v ∈ W we have

σu ◦ σv =
∑

d=(d1,...,dl)≥0

qd(σu ◦ σv)d,

u, v ∈W . Here qd denotes qd1

1 . . . qdl

l and the cohomology class (σu ◦ σv)d is determined by

(2) ((σu ◦ σv)d, σw) = 〈σu|σv|σw〉d,

for any w ∈ W . It turns out that the product ◦ is commutative, associative and it is a
deformation of the cup product (by which mean that if we formally set q1 = . . . = ql = 0,
then ◦ becomes the same as the cup product). If we assign

deg qi = 4, 1 ≤ i ≤ l,

then we also have the grading condition

deg(a ◦ b) = deg a+ deg b,

for any two homogeneous elements a, b of H∗(G/B) ⊗ R[{qi}]. For more details about
quantum cohomology we refer the reader to Fulton and Pandharipande [Fu-Pa].

The first goal of our paper is to prove the following characterization of ◦.

Theorem 1.1. Let ⋆ be a product on the space H∗(G/B) ⊗ R[{qi}] which is commutative,
associative, is a deformation of the cup product (in the sense defined above), satisfies the
condition deg(a ⋆ b) = deg a + deg b, for a, b homogeneous elements of H∗(G/B) ⊗ R[{qi}],
with respect to the grading deg qi = 4, and

1All homology and cohomology groups in this paper will be with coefficients in R (unless otherwise
specified).
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(a) the connection ∇~ on the trivial vector bundle H∗(G/B) × H2(G/B) → H2(G/B)
given by ∇~ = d+ 1

~
ω, where ω(X, Y ) = X ⋆Y , X ∈ H2(G/B), Y ∈ H∗(G/B), is flat

for all ~ 6= 0. Equivalently, if ωk is the matrix of the R[{qi}]-linear endomorphism
σsk

⋆ of H∗(G/B) ⊗ R[{qi}] with respect to the Schubert basis, then we have

∂

∂ti
ωj =

∂

∂tj
ωi

for all 1 ≤ i, j ≤ l (the convention qi = eti is in force).
(b) we have

l
∑

i,j=1

〈α∨
i , α

∨
j 〉σsi

⋆ σsj
=

l
∑

i=1

〈α∨
i , α

∨
i 〉qi.

Then ⋆ is the quantum product ◦.

It is known that the conditions (a) and (b) are satisfied by the quantum product ◦. More
precisely, the connection ∇~ corresponding to ◦ is known as the Dubrovin connection, after
B. Dubrovin, who introduced it and proved that it is flat (see [Du]). As for (b), a proof of
it can be found in [Kim]. For the reader’s convenience, we will include proofs of (a) and (b)
for the product ◦ in the appendix (see the last section). It is interesting to note that both
properties follow easily from the so-called divisor property of the three-point Gromov-Witten
invariants.

Remarks. 1. The proof of Theorem 1.1 will be done in section 2. The main tool we will be
using is the notion of D-module, in the spirit of B. Kim [Kim], Guest [Gu], Amarzaya and
Guest [Am-Gu], and Iritani [Ir]. Here is a brief outline of the proof: D denotes the differential
operator algebra generated by et1 , . . . , etl, ~ ∂

∂t1
, . . . , ~ ∂

∂tl
. We will show that the D-modules

associated in Iritani’s manner to the products ◦ and ⋆ are isomorphic, by using techniques
developed by B. Kim (actually a result we have proven in our previous paper [Ma3]). More
precisely, we obtain the “quantum Toda” D-module, determined by the integrals of motion
of the quantum Toda lattice integrable system. Amarzaya and Guest have found in [Am-Gu]
a concrete method of decoding the quantum cohomology of G/B out of the latter D-module,
by solving a certain PDE system. At the last step of our proof we will be applying their
method.

2. Theorem 1.1 (more precisely, its hypotheses) can be considered as an alternative def-
inition of the (small) quantum cohomology ring of G/B. The reader will decide whether
this is more convenient than the original definition, given in terms of rational curves (see
e.g. [Fu-Pa]). The following question arises: can one prove the main results of the quantum
Schubert calculus for G/B starting from the new definition? We have already proven in
[Ma3] that if ⋆ is a product as in Theorem 1.1, then the ring (H∗(G/B)⊗R[{qi}], ⋆) has the
expected presentation in terms of generators and relations, namely the one determined by
Kim in [Kim]. We will explain in what follows (see the remaining part of this section) how
can one prove the quantum Chevalley and quantum Giambelli formulas for the abstract ring
(H∗(G/B)⊗R[{qi}], ⋆). An important ingredient of the proof is the combinatorial quantum
cohomology ring of G/B, which is a purely combinatorial object defined and investigated
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by us in [Ma4]. Then, in section 3 we will address the case G = SL(n,C) and give a direct
proof of the “quantization via standard monomials” formulas of Fomin, Gelfand and Post-
nikov [Fo-Ge-Po], but this time without using the combinatorial quantum cohomology ring
of [Ma4]. It is important to note that in this way we obtain conceptually new proofs of all
the main results of quantum Schubert calculus for G/B (simply because the actual quantum
product ◦ satisfies the hypotheses of Theorem 1.1, as we explained above).

The second main goal of our paper is to give new proofs of the quantum Chevalley,
quantum Giambelli, and the “quantization via standard monomials” formulas. To this end,
we need a characterization of the quantum Giambelli polynomials in terms of the flatness
of the Dubrovin connection. More precisely, let us denote by QH∗(G/B) the quotient ring
R[{λi}, {qi}]/〈R1, . . . , Rl〉, where R1, . . . , Rl are the quantum deformations in the quantum
cohomology ring (H∗(G/B) ⊗ R[{qi}], ◦) of the fundamental homogeneous generators of
S(t∗)W (R1, . . . , Rl have been determined explicitly by B. Kim in [Kim]; we will present in
section 2 a few more details about that). For any c ∈ R[{λi}, {qi}] we denote by [c]q the
coset of c in QH∗(G/B). The map σsi

7→ [λi]q induces a tautological isomorphism

(3) (H∗(G/B) ⊗ R[{qi}], ◦) ≃ QH∗(G/B).

Finding for each w ∈ W a polynomial ĉw ∈ R[{λi}, {qi}] whose coset in QH∗(G/B) is the
image of σw — in other words, solving the quantum Giambelli problem — would lead to a
complete knowledge of the quantum cohomology ofG/B. We are looking for conditions which
determine the polynomials ĉw. First of all, let us consider for each w ∈ W a polynomial2

cw ∈ R[{λi}] whose coset corresponds to σw via the isomorphism (1). There are two natural
conditions that we impose on the polynomials ĉw:

(4) deg ĉw = deg cw

with respect to the grading deg λi = 2, deg qi = 4, and

(5) ĉw|(all qi =0) = cw.

Whenever the conditions (4) and (5) are satisified, the cosets [ĉw]q, w ∈ W , are a basis of
QH∗(G/B) over R[{qi}]. Consider the 1-form

ω =

l
∑

i=1

ωidti,

where ωi is the matrix of multiplication of QH∗(G/B) by [λi]q with respect to the latter
basis. We can prove that:

Corollary 1.2. Let ĉw, w ∈ W , be polynomials in R[{λi}, {qi}] which satisfy the properties
(4) and (5). Then the image of σw by the isomorphism (3) is [ĉw]q for all w ∈W if and only
if the connection

∇~ = d+
1

~
ω

2These are solutions of the classical Giambelli problem for G/B. Such polynomials have been constructed
for instance by Bernstein, I. M. Gelfand and S. I. Gelfand in [Be-Ge-Ge].
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is flat for all ~ ∈ R \ {0}. The latter condition reads

∂

∂ti
ωj =

∂

∂tj
ωi,

for all 1 ≤ i, j ≤ l.

Proof. Consider the R[{qi}]-linear isomorphism3

δ : QH∗(G/B) → H∗(G/B) ⊗ R[{qi}] = R[{λi}, {qi}]/(IW ⊗ R[{qi}])

determined by

(6) δ[ĉw]q = [cw],

for all w ∈W . Define the product ⋆ on H∗(G/B) ⊗ R[{qi}] by

x ⋆ y = δ(δ−1(x)δ−1(y)),

x, y ∈ H∗(G/B) ⊗ R[{qi}]. The product is commutative, associative, it is a deformation
of the cup product on H∗(G/B), and it satisfies deg(a ⋆ b) = deg a + deg b, where a, b ∈
H∗(G/B) ⊗ R[{qi}] are homogeneous elements. The map δ is obviously a ring isomorphism
between QH∗(G/B) and (H∗(G/B) ⊗ R[{qi}], ⋆). In particular, the following degree two
relation holds:

l
∑

i,j=1

〈α∨
i , α

∨
j 〉[λi] ⋆ [λj] =

l
∑

i=1

〈α∨
i , α

∨
i 〉qi.

Moreover, the matrix of [λi]⋆ on H∗(G/B)⊗R[q1, . . . , ql] with respect to the Schubert basis
{[cw] : w ∈ W} is just ωi. So if the connection ∇~ is flat for all ~, then, by Theorem 1.1,
the products ⋆ and ◦ are the same. This implies that δ is just the isomorphism (3). The
conclusion follows from the definition (6) of δ. �

Corollary 1.2 will be used in section 3 in order to recover the “quantization via standard
monomials” theorem of Fomin, Gelfand, and Postnikov for G = SL(n,C) (see [Fo-Ge-Po,
Theorem 1.1]). It is important to note that the proof does not make use of the combinatorial
quantum cohomology ring, like in the case of the quantum Chevalley formula (see below).

Our strategy of proving the quantum Chevalley formula involves using the combinatorial
quantum product, which has been constructed in [Ma4]. By definition, this is a product,
denote it by ⋆, on H∗(G/B) ⊗ R[{qi}], which does satisfy the quantum Chevalley formula,
namely:

σsi
⋆ σw = σsi

σw +
∑

λi(α
∨)σwsα

qα∨

,

for 1 ≤ i ≤ l, w ∈ W . Here the sum runs over all positive roots α with the property that
l(wsα) = l(w)− 2height(α∨) + 1, where we consider the expansion α∨ = m1α

∨
1 + . . .+mlα

∨
l ,

mj ∈ Z, mj ≥ 0 and denote

height(α∨) = m1 + . . .+ml, qα∨

= qm1

1 . . . qml

l .

We have also shown in [Ma4] that ⋆ satisfies all hypotheses of Theorem 1.1. We deduce:

3This is what Amarzaya and Guest [Am-Gu] call a “quantum evaluation map”.
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Corollary 1.3. The combinatorial and actual quantum products coincide. Consequently, the
actual quantum product ◦ satisfies the quantum Chevalley formula:

(7) σsi
◦ σw = σsi

σw +
∑

l(wsα)=l(w)−2height(α∨)+1

λi(α
∨)σwsα

,

for 1 ≤ i ≤ l, w ∈ W .

Remark. The formula (7) plays a crucial role in the study of the quantum cohomology
algebra of G/B, as this is generated over R[q1, . . . , ql] by the degree 2 Schubert classes
σs1

, . . . , σsl
. The formula was announced by D. Peterson in [Pe]. A rigorous intersection-

theoretic proof has been given by W. Fulton and C. Woodward in [Fu-Wo]. Our proof of
this formula is conceptually different from theirs.

A quantum Giambelli formula, i.e. a formula for representatives of Schubert classes via
the isomorphism (3), for the combinatorial quantum product has been proven in [Ma4].
Consequently, the same formula holds true for the actual quantum product ◦.

Acknowledgements. I am grateful to Jost Eschenburg and Martin Guest for discus-
sions on the topics contained in this paper. I also thank the referee for suggesting several
improvements.

2. D-modules and quantum cohomology

The goal of this section is to give a proof of Theorem 1.1.

We denote by D the Heisenberg algebra, by which we mean the associative R[~]-algebra
generated by Q1, . . . , Ql, P1, . . . , Pl, subject to the relations

(8) [Qi, Qj ] = [Pi, Pj] = 0, [Pi, Qj] = δij~Qj ,

1 ≤ i, j ≤ l. It becomes a graded algebra with respect to the assignments

(9) degQi = 4, degPi = deg ~ = 2.

Note that any element D of D can be written uniquely as an R[~]-linear combination of
monomials of type QIP J .

A concrete realization of D can be obtained by putting Qi = eti and Pi = ~
∂

∂ti
, 1 ≤ i ≤ l.

We will be interested in certain elements of D which arise in connection with the Hamiltonian
system of Toda lattice type corresponding to the coroots of G, namely the first quantum
integrals of motion of this system. Those are homogeneous elements Dk = Dk({Qi}, {Pi}, ~)
of D, 1 ≤ k ≤ l, which commute with

D1 =

l
∑

i,j=1

〈α∨
i , α

∨
j 〉PiPj −

l
∑

i=1

〈α∨
i , α

∨
i 〉Qi

and also satisfy the property that Dk({0}, {λi}, 0), 1 ≤ k ≤ l, are just the fundamental
homogeneous W -invariant polynomials (for more details concerning the differential operators
D1, . . . , Dl we address the reader to [Ma3]). We will denote by I the left sided ideal of D
generated by D1, . . . , Dl.
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Let ⋆ be a product on H∗(G/B) ⊗ R[{qi}] which satisfies the hypotheses of Theorem
1.1. Let us denote by E the D-module (i.e. vector space with an action of the algebra D)
H∗(G/B) ⊗ R[{qi}, ~] defined by

Qi.a = qia, Pi.a = σsi
⋆ a+ ~qi

∂

∂qi
a,

1 ≤ i ≤ l, a ∈ H∗(G/B) ⊗ R[{qi}, ~]. The isomorphism type of the D-module E corre-
sponding to ⋆ is uniquely determined by the hypotheses of Theorem 1.1, as the following
proposition shows:

Proposition 2.1. If ⋆ is a product with the properties stated in Theorem 1.1, then the map
φ : D → H∗(G/B) ⊗ R[{qi}, ~] given by

f({Qi}, {Pi}, ~)
φ
7→ f({Qi}, {Pi}, ~).1 = f({qi}, {σsi

⋆+~qi
∂

∂qi
}, ~).1

is surjective and induces an isomorphism of D-modules

(10) D/I ≃ E,

where I is the left sided ideal of D generated by the quantum integrals of motion of the Toda
lattice (see above).

Proof. We will use the grading on H∗(G/B) ⊗ R[{qi}, ~] induced by the usual grading on
H∗(G/B), deg qi = 4 and deg ~ = 2. Combined with the grading defined by (9), this makes
φ into a degree preserving map (more precisely, it maps a homogeneous element of D to a
homogeneous element of the same degree in H∗(G/B) ⊗ R[{qi}, ~]).

Let us prove first the surjectivity stated in our theorem. It is sufficient to show that
any homogeneous element a ∈ H∗(G/B) ⊗ R[{qi}, ~] can be written as f({Qi}, {Pi}, ~).1.
We proceed by induction on deg a. If deg a = 0, everything is clear. Now consider a ∈
H∗(G/B) ⊗ R[{qi}, ~] a homogeneous element of degree at least 2. By a result of Siebert
and Tian [Si-Ti], we can express

a = g({qi}, {σsi
⋆}, ~)

for a certain polynomial g. We have

a− g({Qi}, {Pi}, ~).1 = a− g({qi}, {σsi
⋆+~qi

∂

∂qi
}, ~).1 = ~b,

where b ∈ H∗(G/B)⊗R[{qi}, ~] is homogeneous of degree deg a− 2 or it is zero. We use the
induction hypothesis for b.

We proved in [Ma3] (see the proof of Lemma 4.5) that the generatorsDk = Dk({Qi}, {Pi}, ~),
1 ≤ k ≤ l, of the ideal I satisfy

(11) Dk({Qi}, {Pi}, ~).1 = 0.

If we let ~ approach 0 in (11) we obtain the relations

(12) Dk({qi}, {σsi
⋆}, 0) = 0,

1 ≤ k ≤ l. They generate the whole ideal of relations in the ring (H∗(G/B) ⊗ R[{qi}], ⋆).
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We need to show that if D is an element of D with the property that

(13) D({Qi}, {Pi}, ~).1 = 0

then D ∈ I. Because the map φ is degree preserving, we may assume that D is homogeneous
and proceed by induction on degD. If degD = 0, i.e. D is constant, then (13) implies D = 0,
hence D ∈ I. It now follows the induction step. From

D.1 = D({qi}, {σsi
⋆+~qi

∂

∂qi
}, ~).1 = 0,

for all ~, we deduce the relation D({qi}, {σsi
⋆}, 0) = 0 in the ring (H∗(G/B) ⊗ R[{qi}], ⋆).

Consequently we have the following polynomial identity

D({qi}, {λi}, 0) =
∑

k

fk({qi}, {λi})Dk({qi}, {λi}, 0),

for certain polynomials fk. By using the commutation relations (8), we obtain the following
identity in D:

D({Qi}, {Pi}, 0) ≡
∑

k

fk({Qi}, {Pi})Dk({Qi}, {Pi}, 0) mod ~

≡
∑

k

fk({Qi}, {Pi})Dk({Qi}, {Pi}, ~) mod ~.

In other words,

D({Qi}, {Pi}, ~) =
∑

k

fk({Qi}, {Pi})Dk({Qi}, {Pi}, ~) + ~D′({Qi}, {Pi}, ~),

for a certain D′ ∈ D, with degD′ < degD. From (12) and (13) we deduce that

D′({Qi}, {Pi}, ~).1 = 0

Since degD′ < degD, we only have to use the induction hypothesis for D′ and get to the
desired conclusion.

�

Note that (10) is also an isomorphism of R[{Qi}, ~]-modules. Since the actual quantum
product ◦ satisfies the hypotheses of Theorem 1.1, we deduce that the dimension of D/I as
an R[{Qi}, ~]-module equals |W |. Let us consider the “standard monomial basis” {[Cw] :
w ∈W} of D/I over R[{Qi}, ~] with respect to a choice of a Gröbner basis of the ideal I (for
more details, see Guest [Gu, section 1] and the references therein). Any Cw is a monomial
in P1, . . . , Pl and the cosets of the monomials

cw = Cw(λ1, . . . , λl), w ∈W

in H∗(G/B) = S(t∗)/S(t∗)W = R[{λi}]/IW are a basis. We will need the following result.

Proposition 2.2. There exists a unique basis {[C̄w] : w ∈ W} of D/I over R[{Qi}, ~] with
the following properties:

(i) for all w ∈ W the element C̄w = C̄w({Qi}, {Pi}, ~) of D is homogeneous of degree
2 deg cw with respect to the grading defined by (9)
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(ii) for all w ∈W we have

C̄w({0}, {λi}, ~) ≡ cw mod IW ;

in particular C̄w({0}, {λi}, ~)mod IW is independent of ~

(iii) the elements (Ω̄i
vw)1≤i≤l

v,w∈W of R[Q1, . . . , Ql, ~] determined by

Pi[C̄w] =
∑

v∈W

Ω̄i
vw[C̄v],

are independent of ~.

Proof. In order to show that such a basis exists, we consider the isomorphism

φ : D/I → H∗(G/B) ⊗ R[{qi}, ~]

induced by the actual quantum product ◦ via Proposition 2.1. The basis {[cw] : w ∈ W} of
the right hand side induces the basis {[C̄w] = φ−1([cw]) : w ∈W} of D/I over R[{Qi}, ~]. It
is obvious that the latter basis satisfies (i) and (iii). In order to show that it also satisfies
(ii), we consider the following commutative diagram:

D/I
φ

−→ H∗(G/B) ⊗ R[{qi}, ~]

ψ1 ց ւ ψ2

H∗(G/B) ⊗ R[~]

where ψ2 is the canonical projection and ψ1 : D/I → H∗(G/B)⊗R[~] = (R[{λi}]/IW )⊗R[~]
is given by

[D({Qi}, {Pi}, ~)] 7→ [D({0}, {λi}, ~)].

Note that ψ1 is well defined, as for any k = 1, 2, . . . , l, the polynomial Dk({0}, {λi}, ~) is
independent of ~, being equal to uk, the k-th fundamental W -invariant polynomial (see [Ma
2, section 3]). We observe that

[C̄w({0}, {λi}, ~)] = ψ1[C̄w] = ψ2[cw] = [cw],

hence condition (ii) is satisfied.

In order to show that there exists at most one such basis, one can use the method of
[Am-Gu, section 2]. More precisely, we only need to note that the PDE system presented
there has at most one “admissible” solution. �

Now we can prove our main result:

Proof of Theorem 1.1 Let ⋆ be a product with the properties stated in Theorem 1.1.
Consider the isomorphism of D-modules

φ : D/I → H∗(G/B) ⊗ R[{qi}, ~]

given by Proposition 2.1. The basis {[cw] : w ∈W} of the right hand side induces the basis
{[C̄w] = φ−1([cw]) : w ∈ W} of D/I over R[{Qi}, h]. It is obvious that the latter satisfies
the hypotheses (i) and (iii) of Proposition 2.2. We show that it also satisfies (ii) by using
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the argument already employed in the first part of the proof of Proposition 2.2. Now from
Proposition 2.2, we deduce that

[C̄w] = [Ĉw],

for w ∈ W , where the basis {[Ĉw] : w ∈ W} is induced by the actual quantum product ◦.
Now, since φ is an isomorphism of D-modules, φ([C̄w]) = [cw] and φ(Pi) = [λi], we deduce
that the matrix of [λi]⋆ with respect to the basis {[cw] : w ∈ W} is the same as the matrix
of Pi with respect to the basis {[C̄w] : w ∈W}. Consequently we have

[λi] ⋆ a = [λi] ◦ a,

for all a ∈ H∗(G/B) ⊗ R[q1, . . . , ql]. Hence the products ⋆ and ◦ are the same. �

3. Quantization map for F ln

In the case G = SL(n,C), the resulting flag manifold is F ln, which is the space of all
complete flags in C

n. Borel’s presentation (see eq. (1)) in this case reads

H∗(F ln) = R[λ1, . . . , λn−1]/(In)≥2,

where (In)≥2 denotes the ideal generated by the nonconstant symmetric polynomials of degree
at least 2 in the variables

x1 := −λ1, x2 := λ1 − λ2, . . . , xn−1 := λn−2 − λn−1, xn := λn−1.

Equivalently, we have

H∗(F ln) = R[x1, . . . , xn]/In

where In denotes the ideal generated by the nonconstant symmetric polynomials of degree
at least 1 in the variables x1, . . . , xn. For any k ∈ {0, 1, . . . , n} we consider the polynomials
ek
0, . . . , e

k
k in the variables x1, . . . , xk, which can be described by

det

















x1 0 . . . 0
0 x2 . . . 0
. . . . . . . . . . . .
0 . . . 0 xk









+ µIk









=

n
∑

i=0

ek
i µ

k−i.

For i1, . . . , in−1 ∈ Z such that 0 ≤ ij ≤ j, we define

ei1...in−1
= e1i1 . . . e

n−1
in−1

.

These are called the standard elementary monomials. It is known (see e.g. [Fo-Ge-Po,
Proposition 3.4]) that the set {[ei1...in−1

] : 0 ≤ ij ≤ j} is a basis of H∗(F ln).



THE QUANTUM COHOMOLOGY RING OF G/B 11

We also consider the polynomials4 êk
0, . . . , ê

k
k in the variables x1, . . . , xk, q1, . . . , qk−1, which

are described by

det

























x1 q1 0 . . . 0
−1 x2 q2 . . . 0
. . . . . . . . . . . . . . .
0 . . . −1 xk−1 qk−1

0 . . . 0 −1 xk













+ µIk













=

k
∑

i=0

êk
i µ

k−i.

For i1, . . . , in−1 such that 0 ≤ ij ≤ j, we define the quantum standard elementary monomials

êi1...in−1
= ê1i1 . . . , ê

n−1
in−1

.

By a theorem of Ciocan-Fontanine [Ci] (in fact Kim’s theorem for G = SL(n,C), see section
1), we have the following isomorphism of R[q1, . . . , qn−1]-algebras

(14) (H∗(F ln) ⊗ R[q1, . . . , qn−1], ◦) ≃ QH∗(F ln) := R[x1, . . . xn, q1, . . . , qn−1]/〈ê
n
1 , . . . , ê

n
n〉,

which is canonical, in the sense that [xi] is mapped to [xi]q. According to [Fo-Ge-Po], we
will call this the quantization map. Since the conditions (4) and (5) are satisfied, we deduce
that {[êi1...in−1

]q : 0 ≤ ij ≤ j} is a basis of QH∗(F ln) over R[q1, . . . , qn−1]. We also point out
the obvious fact that {[ei1...in−1

] : 0 ≤ ij ≤ j} is a basis of H∗(F ln) ⊗ R[q1, . . . , qn−1] over
R[q1, . . . , qn−1]. The goal of this section is to give a different proof to the following theorem
of Fomin, Gelfand, and Postnikov.

Theorem 3.1. (see [Fo-Ge-Po, Theorem 1.1]). The quantization map described by equation
(14) sends [ei1...in−1

] to [êi1...in−1
]q.

The main instrument of our proof is the D-module D/I defined in section 2. In this case
(i.e. G = SL(n,C)) we can describe it explicitly, as follows: D is the (noncommutative)
Heisenberg algebra defined at the beginning of section 2, where l = n− 1. The left ideal I
of D is generated by En

1 , . . . , E
n
n−1, where

det

























−P1 Q1 0 . . . 0
−1 P1 − P2 Q2 . . . 0
. . . . . . . . . . . . . . .
0 . . . −1 Pn−2 − Pn−1 Qn−1

0 . . . 0 −1 Pn−1













+ µIn













=
n

∑

i=0

En
i µ

n−i.

In fact we will need more general elements of D, namely, for each k ∈ {1, . . . , n − 1}, we
consider the elements Ek

i of D, with 0 ≤ i ≤ k, given by

det

























−P1 Q1 0 . . . 0
−1 P1 − P2 Q2 . . . 0
. . . . . . . . . . . . . . .
0 . . . −1 Pk−2 − Pk−1 Qk−1

0 . . . 0 −1 Pk−1 − Pk













+ µIk













=
k

∑

i=0

Ek
i µ

k−i.

4These are the polynomials Ek
i

of [Fo-Ge-Po].
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One can easily see that when we expand the determinant in the left hand side of the last
equation, we will have no occurrence of PjQj or QjPj , 1 ≤ j ≤ k − 1. This means that the
lack of commutativity of Qj and Pj creates no ambiguity in the definition of En

1 , . . . , E
n
n−1.

We can also deduce that each of Ek
1 , . . . , E

k
k is a linear combination of monomials in the

variables {P1, . . . , Pk, Q1, . . . , Qk−1}, with no ocurrence of PjQj or QjPj (i.e. the order of
factors in each monomial is not important). As a consequence, the following recurrence
formula [Fo-Ge-Po, equation (3.5)] still holds:

(15) Ek
i = Ek−1

i +XkE
k−1
i−1 +Qk−1E

k−2
i−2 ,

where Xk stands for Pk−1 − Pk and, by convention, Ek
j = 0, unless 0 ≤ j ≤ k. It is worth

mentioning the following commutation relations, which will be used later:

(16) [Xk, E
l
j] = 0, [Qk, E

l
j] = 0,

whenever l ≤ k − 1. We also note that Ek
0 = 1 and Ek

1 = −Pk (where Pn is by convention
equal to 0). We will prove the following result.

Lemma 3.2. The elements Ek
1 , . . . , E

k
k−1 of D commute with each other.

Proof. Consider the coordinates s0, . . . , sk−1 on Rk. Following [Kim-Joe], we consider the
differential operators Dj(~

∂
∂s0
, , . . . , ~ ∂

∂sk−1
, es1−s0, . . . , esk−1−sk−2) given by

det





























~
∂

∂s0
es1−s0 0 . . . 0

−1 ~
∂

∂s1
es2−s1 . . . 0

. . . . . . . . . . . . . . .
0 . . . −1 ~

∂
∂sk−2

esk−1−sk−2

0 . . . 0 −1 ~
∂

∂sk−1















+ µIk















=

k
∑

i=0

Dk
i µ

k−i.

By [Kim-Joe, Proposition 1], we have [Dk
i , D

k
j ] = 0 for all 0 ≤ i, j ≤ k. In order to prove our

lemma, it is sufficient to note that if we make the change of coordinates

s1 − s0 = t1, . . . , sk−1 − sk−2 = tk−1,−sk−1 = tk,

we obtain

~
∂

∂s0
= −~

∂

∂t1
= −P1, ~

∂

∂s1
= ~

∂

∂t1
−~

∂

∂t2
= P1−P2, . . . , ~

∂

∂sk−1
= ~

∂

∂tk−1
−~

∂

∂tk
= Pk−1−Pk,

where we have used the presentation of D given by Pi = ~
∂

∂ti
, Qi = eti , 1 ≤ i ≤ n− 1. �

The following technical result will be needed later.

Lemma 3.3. We have

(17) [Ek+1
j+1 , E

k
i ] = [Ek+1

i+1 , E
k
j ].

Proof. We prove this by induction on k ≥ 0. For k = 0, the equation is obvious (by the
convention made above, we have E j

0 = 0). It follows the induction step. We use the recurrence
formula (15). This gives

[Ek+1
j+1 , E

k
i ] = [Ek

j+1 +Xk+1E
k
j +QkE

k−1
j−1 , E

k
i ] = [QkE

k−1
j−1 , E

k
i ].
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We continue by using again equation (15) and obtain

[QkE
k−1
j−1 , E

k−1
i +XkE

k−1
i−1 +Qk−1E

k−2
i−2 ]

= [Qk, Xk]E
k−1
i−1 E

k−1
j−1 + [QkE

k−1
j−1 , Qk−1E

k−2
i−2 ]

= [Qk, Xk]E
k−1
i−1 E

k−1
j−1 +Qk[E

k−1
j−1 , Qk−1E

k−2
i−2 ]

= [Qk, Xk]E
k−1
i−1 E

k−1
j−1 +Qk[E

k−1
j−1 , E

k
i − Ek−1

i −XkE
k−1
i−1 ]

= [Qk, Xk]E
k−1
i−1 E

k−1
j−1 +Qk([E

k−1
j−1 , E

k
i ] − [Ek−1

j−1 , XkE
k−1
i−1 ])

= [Qk, Xk]E
k−1
i−1 E

k−1
j−1 +Qk[E

k−1
j−1 , E

k
i ]

Here we have used the commutation relations (16) several times. Similarly, we obtain

[Ek+1
i+1 , E

k
j ] = [Qk, Xk]E

k−1
j−1 E

k−1
i−1 +Qk[E

k−1
i−1 , E

k
j ].

We use the induction hypothesis to finish the proof. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let ωk denote the matrix of multiplication by [yk]q with respect to
the basis {[êi1...in−1

]q : 0 ≤ ij ≤ j} of QH∗(F ln) (see equation (14)). More precisely, the
entries of ωi are polynomials in q1, . . . , qn−1, determined by

(18) [yk]q[êi1...in−1
]q =

∑

l1,...,ln−1

ω
i1...in−1,l1...ln−1

k [êl1...ln−1
]q.

According to Corollary 1.2, it is sufficient to show that

(19)
∂

∂ti
ωj =

∂

∂tj
ωi,

for 1 ≤ i, j ≤ n − 1, where as usually, we use the convention qi = eti . For i1, . . . , in−1 such
that 0 ≤ ij ≤ j, we consider

Ei1...in−1
:= E1

i1
E2

i2
. . . En−1

in−1
.

In order to prove equation (19), it is sufficient to prove the following claim.

Claim. In D/I we have

(20) [Pk][Ei1...in−1
] =

∑

l1,...,ln−1

Ω
i1...in−1,l1...ln−1

k [El1...ln−1
],

where each Ω
i1...in−1,l1...ln−1

k is obtained from ω
i1...in−1,l1...ln−1

k by the modification Qi 7→ qi.

Indeed, if we make the usual identifications Pk = ~
∂

∂tk
, Qk = etk , 1 ≤ k ≤ n− 1, then (20)

implies that the connection

d+
n−1
∑

k=1

1

~
Ωkdtk

is flat (see e.g. [Gu, Proposition 1.1]) for all values of ~, which implies (19). The proof of the
claim relies on a noncommutative version of the quantum straightening algorithm of Fomin,
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Gelfand, and Postnikov [Fo-Ge-Po]. The key equation is the following.

(21) Ek
i E

k+1
j+1 + Ek

i+1E
k
j +QkE

k−1
i−1 E

k
j = Ek

j E
k+1
i+1 + Ek

j+1E
k
i +QkE

k−1
j−1 E

k
i .

We note that this is the same as equation (3.6) in [Fo-Ge-Po]. The difference is that here we
work in the algebra D, which is not commutative, so it is not a priori clear that (21) still
holds. In order to prove it, we use equation (15) twice and obtain:

(Ek+1
j+1 − Ek

j+1)E
k
i = (Xk+1E

k
j +QkE

k−1
j−1 )Ek

i ,

and

(Ek+1
i+1 − Ek

i+1)E
k
j = (Xk+1E

k
i +QkE

k−1
i−1 )Ek

j .

If we subtract the second equation from the first one, we obtain:

Ek+1
i+1 E

k
j − Ek+1

j+1 E
k
i = Ek

i+1E
k
j − Ek

j+1E
k
i +Qk(E

k−1
i−1 E

k
j − Ek−1

j−1 E
k
i ).

Now the left hand side can be written as

Ek
j E

k+1
i+1 − Ek

i E
k+1
j+1 + [Ek+1

i+1 , E
k
j ] − [Ek+1

j+1 , E
k
i ] = Ek

j E
k+1
i+1 − Ek

i E
k+1
j+1 ,

where we have used Lemma 3.3. Equation (21) has been proved. Now we can use it exactly
like in the commutative situation, described in [Fo-Ge-Po], in order to obtain the expansion
of the product of Pk = −Ek

1 and Ei1...in−1
= E1

i1
. . . En−1

in−1
. More precisely, we begin with

PkEi1...in−1
= E1

i1
. . . Ek−1

ik−1
PkE

k
ik
Ek+1

ik+1
. . . En−1

in−1
= −E1

i1
. . . Ek−1

ik−1
Ek

1E
k
ik
Ek+1

ik+1
. . . En−1

in−1
,

and then we use (21) repeatedly. The resulting coefficients in the final expansion will be
the same as in the commutative situation. This finishes the proof of the claim, and also of
Theorem 3.1. �

4. Appendix

We will give simple proofs of properties (a) and (b) in Theorem 1.1 for the actual quantum
product ◦. They are both straightforward consequences of the following “divisor property”
(see [Fu-Pa, equation (40)] for a more general version of this formula):

(22) 〈σsj
|σw|σv〉d = dj〈σw|σv〉d,

for any 1 ≤ j ≤ l, d = (d1, . . . , dl) ∈ H2(G/B,Z), and v, w ∈ W . Here 〈σw|σv〉d is
the two-point Gromov-Witten invariant, which represents the number of holomorphic maps
ϕ : P1 → G/B with ϕ∗([P

1]) = d in H2(G/B) and such that ϕ(P1) intersects general
translates of the Schubert varieties dual to σw and σv, modulo PSL(2,C) (the latter group
acts on ϕ by reparametrizing it).

First we prove condition (a), i.e. the flatness of the Dubrovin connection. This is

∇~ = d+
1

~
ω,

where ω is the 1-form on H2(G/B) with values in End(H∗(G/B)) given by

ωt(X, Y ) = X ◦ Y,
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for t = (t1, . . . , tl) ∈ H2(G/B), X ∈ H2(G/B) and Y ∈ H∗(G/B). Here the convention

qi = eti , 1 ≤ i ≤ l

is in force. Note that the ω can be expressed as

ω =

l
∑

i=1

ωidti,

where ωi denotes the matrix of the operator σsi
◦ on H∗(G/B) with respect to the basis

consisting of the Schubert classes.

Lemma 4.1. The Dubrovin connection ∇~ is flat for any ~ ∈ R \ {0}, i.e. we have

(23) dω = ω ∧ ω = 0

Proof. The fact that dω = 0 amounts to

∂

∂ti
ωj =

∂

∂tj
ωi,

which is equivalent to
di(σsj

◦ σw)d = dj(σsi
◦ σw)d

for any w ∈W and any d = (d1, . . . , dl), hence, by (2), to

di〈σsj
|σw|σv〉d = dj〈σsi

|σw|σv〉d.

The latter equation is an obvious consequence of the divisor rule (22). The equality ω∧ω = 0
is equivalent to ωiωj = ωjωi, 1 ≤ i, j ≤ l; this follows immediately from the fact that the
product ◦ is commutative and associative. �

Next we turn to property (b).

Lemma 4.2. We have

(24)
l

∑

i,j=1

〈α∨
i , α

∨
j 〉σsi

◦ σsj
=

l
∑

i=1

〈α∨
i , α

∨
i 〉qi.

Proof. The crucial point of the proof is the following equation.

(25) σsi
◦ σsj

= σsi
σsj

+ δijqj.

In turn, by (2) this amounts to the fact that if ek := (0, . . . , 0, 1, 0, . . . , 0) (where 1 is on the
k-th position), then the homology class (σsi

◦ σsj
)ek

∈ H0(G/B) satisfies

((σsi
◦ σsj

)ek
, PD[pt]) = δijk,

where, by definition, δijk is 1 if i = j = k and 0 otherwise, and PD[pt] denotes the (top-
dimensional) cohomology class which is Poincaré dual to a point. By (2) and the divisor rule
(22), we only need to prove that

〈σsi
|PD[pt]〉ei

= 1.

But this follows immediately from the fact that the Poincaré dual of the homology class ej

is σw0si
, and the intersection pairing of the latter with σsi

equals 1.
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Now (25) implies (24), because

l
∑

i,j=1

〈α∨
i , α

∨
j 〉σsi

σsj
= 0,

which in turn follows from the fact that the polynomial
∑l

i,j=1〈α
∨
i , α

∨
j 〉λiλj ∈ S(t∗) is W -

invariant (being just the squared norm on t).

�

Remark. Another proof of the last lemma can be found in [Ma1, section 3].
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