A CHARACTERIZATION OF THE QUANTUM COHOMOLOGY RING
OF G/B AND APPLICATIONS
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ABSTRACT. We observe that the small quantum product of the generalized flag manifold
G/B is a product operation * on H*(G/B) @ Rqu, ..., ¢] uniquely determined by the fact
that it is a deformation of the cup product on H*(G/B), it is commutative, associative,
graded with respect to deg(g;) = 4, it satisfies a certain relation (of degree two), and the
corresponding Dubrovin connection is flat. We had proven in [Ma3] that these properties
alone imply the presentation of the ring (H*(G/B) @ R[q1, ..., q], ) in terms of generators
and relations. In this paper we use the observation from above to give conceptually new
proofs of other fundamental results of the quantum Schubert calculus for G/B: the quantum
Chevalley formula of D. Peterson [Pe] (see also Fulton and Woodward [Fu-Wo]) and the
“quantization by standard monomials” formula of Fomin, Gelfand, and Postnikov [Fo-Ge-
Po] for G = SL(n,C). The main idea of the proofs is the same as in Amarzaya-Guest
[Am-Gu]: from the quantum D-module of G/B one can decode all information about the
quantum cohomology of this space.
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1. INTRODUCTION

Let us consider the complex flag manifold G/B, where G is a connected, simply connected,
simple, complex Lie group and B C G a Borel subgroup. Let t be the Lie algebra of a maximal
torus of a compact real form of G and ® C t* the corresponding set of roots. Consider an
arbitrary W-invariant inner product ( , ) on t. To any root « corresponds the coroot

which is an element of t, by using the identification of t and t* induced by (, ). If {ay, ..., o}
is a system of simple roots then {ay,...,@} is a system of simple coroots. Consider
{A1,..., A&} C t* the corresponding system of fundamental weights, which are defined by
Ai(e) = 6i5. The Weyl group W' is the subgroup of O(t, ( , )) generated by the reflections
about the hyperplanes ker o, o € ®*. It can be shown that W is in fact generated by the
simple reflections s; = sq,, ..., 51 = Sq, about the hyperplanes ker a1, ..., ker ;. The length
[(w) of w is the minimal number of factors in a decomposition of w as a product of simple

reflections.
1
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Let B~ C G denote the Borel subgroup opposite to B. To each w € W we assign the Schu-
bert variety X,, = B~.w. The Poincaré dual of [X,] is an element of' H?()(G/B), which
is called the Schubert class. The set {0, | w € W} is a basis of H*(G/B) = H*(G/B,R),
hence {oy,,...,0,} is a basis of H*(G/B). A theorem of Borel [Bo] says that the map

(1) H*(G/B) — S(t)/S(€)" = R{A}/Tw
described by o, — [\, 1 <4 <, is a ring isomorphism (we are denoting by S(t)"V = Iy,
the ideal of S(t*) = R[{\;}] generated by the non-constant W-invariant polynomials).

To any [-tuple d = (dy,...,d;) with d; € Z, d; > 0 corresponds a Gromov- Witten in-
variant (-] - |)a. To define it, we make the identification Hy(G/B,Z) = Z' via the basis
consisting of the two-dimensional Schubert classes, that is, the classes whose Poincaré duals
are Ouyps, s - - - Ougs;, Where wy denotes the longest element of W. We denote by

() : H(G/B) x H*(G/B) — R

the Poincaré pairing of G/B. To any three Schubert classes o, 0y, 0,, one assigns the number
denoted by (o,|0,|04)4, which counts the holomorphic curves ¢ : CP' — G/B such that
©0.([CP')) = din Hy(G/B) and (0), ¢(1) and ¢(c0) are in general translates of the Schubert
varieties dual to o, 0,, respectively o,,. Let us consider the variables ¢y, ..., q. The quantum
cohomology ring of G/B is the space H*(G/B) ® R[{¢;}] equipped with the product o which
is R[{g;}]-linear and for any two Schubert classes o, 0,, u,v € W we have

Oy © 0y = Z qd(au o Uv)da

u,v € W. Here ¢¢ denotes ¢ .. .qldl and the cohomology class (o, © 0,), is determined by

(2) (0w 0 0v)d 0w) = (OulOu]ow)d,

for any w € W. It turns out that the product o is commutative, associative and it is a
deformation of the cup product (by which mean that if we formally set ¢; = ... = ¢ = 0,
then o becomes the same as the cup product). If we assign

degg; =4, 1<1i<],
then we also have the grading condition
deg(a o b) = dega + degb,

for any two homogeneous elements a,b of H*(G/B) ® R[{¢;}]. For more details about
quantum cohomology we refer the reader to Fulton and Pandharipande [Fu-Pa].

The first goal of our paper is to prove the following characterization of o.

Theorem 1.1. Let x be a product on the space H*(G/B) ® R[{¢;}| which is commutative,
associative, is a deformation of the cup product (in the sense defined above), satisfies the
condition deg(a x b) = dega + degb, for a,b homogeneous elements of H*(G/B) ® R[{q:}],
with respect to the grading deg ¢; = 4, and

1Al homology and cohomology groups in this paper will be with coefficients in R (unless otherwise
specified).
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(a) the connection V" on the trivial vector bundle H*(G/B) x H*(G/B) — H*(G/B)
given by V" = d+jw, where w(X,Y) = XY, X € H*(G/B),Y € H*(G/B), is flat
for all b # 0. Equivalently, if wy is the matriz of the R[{q;}|-linear endomorphism
o5, % of H*(G/B) @ R[{q;}] with respect to the Schubert basis, then we have

0 0

ot 7 ot

for all 1 <i,j <1 (the convention q; = €' is in force).
(b) we have
I

l
Z (o], O‘gv>asz~ *0s; = Z(O‘ivv ;).
ij=1

1=1

Then x 1s the quantum product o.

It is known that the conditions (a) and (b) are satisfied by the quantum product o. More
precisely, the connection V" corresponding to o is known as the Dubrovin connection, after
B. Dubrovin, who introduced it and proved that it is flat (see [Du]). As for (b), a proof of
it can be found in [Kim]. For the reader’s convenience, we will include proofs of (a) and (b)
for the product o in the appendix (see the last section). It is interesting to note that both
properties follow easily from the so-called divisor property of the three-point Gromov-Witten
invariants.

Remarks. 1. The proof of Theorem 1.1 will be done in section 2. The main tool we will be
using is the notion of D-module, in the spirit of B. Kim [Kim], Guest [Gu], Amarzaya and
Guest [Am-Gu], and Iritani [Ir]. Here is a brief outline of the proof: D denotes the differential
operator algebra generated by e, ... el ha%, ey ha%. We will show that the D-modules
associated in Iritani’s manner to the products o and x are isomorphic, by using techniques
developed by B. Kim (actually a result we have proven in our previous paper [Ma3]). More
precisely, we obtain the “quantum Toda” D-module, determined by the integrals of motion
of the quantum Toda lattice integrable system. Amarzaya and Guest have found in [Am-Gu]
a concrete method of decoding the quantum cohomology of G/ B out of the latter D-module,
by solving a certain PDE system. At the last step of our proof we will be applying their
method.

2. Theorem 1.1 (more precisely, its hypotheses) can be considered as an alternative def-
inition of the (small) quantum cohomology ring of G/B. The reader will decide whether
this is more convenient than the original definition, given in terms of rational curves (see
e.g. [Fu-Pal). The following question arises: can one prove the main results of the quantum
Schubert calculus for G/B starting from the new definition? We have already proven in
[Ma3] that if * is a product as in Theorem 1.1, then the ring (H*(G/B) @ R[{¢;}], *) has the
expected presentation in terms of generators and relations, namely the one determined by
Kim in [Kim|. We will explain in what follows (see the remaining part of this section) how
can one prove the quantum Chevalley and quantum Giambelli formulas for the abstract ring
(H*(G/B) @ R[{gi}],*). An important ingredient of the proof is the combinatorial quantum
cohomology ring of G//B, which is a purely combinatorial object defined and investigated
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by us in [Ma4]. Then, in section 3 we will address the case G = SL(n,C) and give a direct
proof of the “quantization via standard monomials” formulas of Fomin, Gelfand and Post-
nikov [Fo-Ge-Po|, but this time without using the combinatorial quantum cohomology ring
of [Ma4]. It is important to note that in this way we obtain conceptually new proofs of all
the main results of quantum Schubert calculus for G/B (simply because the actual quantum
product o satisfies the hypotheses of Theorem 1.1, as we explained above).

The second main goal of our paper is to give new proofs of the quantum Chevalley,
quantum Giambelli, and the “quantization via standard monomials” formulas. To this end,
we need a characterization of the quantum Giambelli polynomials in terms of the flatness
of the Dubrovin connection. More precisely, let us denote by QH*(G/B) the quotient ring
R{N} {@H/(Ry, ..., R), where Ry, ..., R, are the quantum deformations in the quantum
cohomology ring (H*(G/B) ® R[{¢}],0) of the fundamental homogeneous generators of
St )V (Ry, ..., R, have been determined explicitly by B. Kim in [Kim]; we will present in
section 2 a few more details about that). For any ¢ € R[{\;},{¢}] we denote by [c], the
coset of ¢ in QH*(G/B). The map o,, — [\, induces a tautological isomorphism

(3) (H*(G/B) @ R[{gi}], o) ~ QH"(G/B).

Finding for each w € W a polynomial ¢,, € R[{\;}, {¢}] whose coset in QH*(G/B) is the
image of ,, — in other words, solving the quantum Giambelli problem — would lead to a
complete knowledge of the quantum cohomology of G/B. We are looking for conditions which
determine the polynomials ¢,. First of all, let us consider for each w € W a polynomial?
cw € R[{\;}] whose coset corresponds to o, via the isomorphism (1). There are two natural
conditions that we impose on the polynomials ¢,,:

(4) deg ¢, = deg ¢,y
with respect to the grading deg \; = 2, deg ¢; = 4, and
(5) éw|(all ¢ =0) — Cy-

Whenever the conditions (4) and (5) are satisified, the cosets [¢,],, w € W, are a basis of
QH*(G/B) over R[{¢;}]. Consider the 1-form

l
W = Zwidti,
i=1

where w; is the matrix of multiplication of QH*(G/B) by [\;], with respect to the latter
basis. We can prove that:

Corollary 1.2. Let é,, w € W, be polynomials in R[{\;},{q:}| which satisfy the properties
(4) and (5). Then the image of o,, by the isomorphism (3) is [y, for allw € W if and only
if the connection

1
Vh:dJrﬁw

2These are solutions of the classical Giambelli problem for G /B. Such polynomials have been constructed
for instance by Bernstein, I. M. Gelfand and S. I. Gelfand in [Be-Ge-Ge].
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is flat for all h € R\ {0}. The latter condition reads
0 3}

= Wi,

ot~ o
forall1 <i,5 <I.

Proof. Consider the R[{g;}]-linear isomorphism?®

5 QH(G/B) — H"(G/B) ® Rl{g:}] = RI{AY, {a})/ (I © Rl{}])
determined by

(6) 0lcw]q = [eul,

for all w € W. Define the product x on H*(G/B) @ R[{¢;}| by

zxy =06(0""(2)0(y)),
xz,y € H*(G/B) ® R[{g;}]. The product is commutative, associative, it is a deformation
of the cup product on H*(G/B), and it satisfies deg(a x b) = dega + degb, where a,b €
H*(G/B) ® R[{¢;}] are homogeneous elements. The map § is obviously a ring isomorphism
between QH*(G/B) and (H*(G/B) @ R[{¢}],*). In particular, the following degree two

relation holds: z l

> (al eI x N =) () a))a.

ij=1 i=1
Moreover, the matrix of [A;]x on H*(G/B) ® R[qi, . .., q] with respect to the Schubert basis
{lcw] : w € W} is just w;. So if the connection V" is flat for all h, then, by Theorem 1.1,
the products * and o are the same. This implies that ¢ is just the isomorphism (3). The
conclusion follows from the definition (6) of ¢. O

Corollary 1.2 will be used in section 3 in order to recover the “quantization via standard
monomials” theorem of Fomin, Gelfand, and Postnikov for G = SL(n,C) (see [Fo-Ge-Po,
Theorem 1.1]). It is important to note that the proof does not make use of the combinatorial
quantum cohomology ring, like in the case of the quantum Chevalley formula (see below).

Our strategy of proving the quantum Chevalley formula involves using the combinatorial
quantum product, which has been constructed in [Ma4]. By definition, this is a product,
denote it by *, on H*(G/B) ® R[{¢;}|, which does satisfy the quantum Chevalley formula,

namely:

\ «
Kk Oy = 0.0, —|—E )\'Oé (oF
1 1
Os w s; Vw z( )wsaq 9

for 1 <i <[, w € W. Here the sum runs over all positive roots a with the property that
l(wsq) = l(w) — 2height(a¥) 4+ 1, where we consider the expansion ¥ = myay + ... +may,
m; € Z, mj > 0 and denote

height(a”) = my + ... + my, ¢ = g
We have also shown in [Ma4] that * satisfies all hypotheses of Theorem 1.1. We deduce:

3This is what Amarzaya and Guest [Am-Gu] call a “quantum evaluation map”.
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Corollary 1.3. The combinatorial and actual quantum products coincide. Consequently, the
actual quantum product o satisfies the quantum Chevalley formula:

(7) 04, 0 Op = 04,00 + > i (@) s,

l(wsa)=l(w)—2height(aV)+1
for1 <i<Il,weW.

Remark. The formula (7) plays a crucial role in the study of the quantum cohomology
algebra of G/B, as this is generated over R|qy,...,q| by the degree 2 Schubert classes
Osys---,0s. The formula was announced by D. Peterson in [Pe]. A rigorous intersection-
theoretic proof has been given by W. Fulton and C. Woodward in [Fu-Wo]. Our proof of
this formula is conceptually different from theirs.

A quantum Giambelli formula, i.e. a formula for representatives of Schubert classes via
the isomorphism (3), for the combinatorial quantum product has been proven in [Mad].
Consequently, the same formula holds true for the actual quantum product o.

Acknowledgements. I am grateful to Jost Eschenburg and Martin Guest for discus-
sions on the topics contained in this paper. I also thank the referee for suggesting several
improvements.

2. D-MODULES AND QUANTUM COHOMOLOGY

The goal of this section is to give a proof of Theorem 1.1.

We denote by D the Heisenberg algebra, by which we mean the associative R[A]-algebra
generated by Qq,...,Q;, Pi,..., P, subject to the relations

1 <1,7 <. It becomes a graded algebra with respect to the assignments
(9) deg@Q; =4, degP, =degh =2.

Note that any element D of D can be written uniquely as an R[h]-linear combination of
monomials of type QT P7.

A concrete realization of D can be obtained by putting Q); = e and P; = ha%, 1<i <.
We will be interested in certain elements of D which arise in connection with the Hamiltonian
system of Toda lattice type corresponding to the coroots of G, namely the first quantum
integrals of motion of this system. Those are homogeneous elements Dy, = Dy({Q;},{P;}, h)
of D, 1 < k <, which commute with

l l
Dy = Z<O‘z\/vo‘;/>RPj - Z(ayvaz/>Qz
ij=1 i=1
and also satisfy the property that Dy ({0}, {\;},0), 1 < k < [, are just the fundamental
homogeneous W-invariant polynomials (for more details concerning the differential operators
Dy, ..., D; we address the reader to [Ma3]). We will denote by Z the left sided ideal of D
generated by Dy, ..., D;.
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Let x be a product on H*(G/B) ® R[{¢;}] which satisfies the hypotheses of Theorem
1.1. Let us denote by E the D-module (i.e. vector space with an action of the algebra D)
H*(G/B) ® R[{q;}, h] defined by

Qi.a =qa, PL.a=o04*xa+ hq,-ia,
dq;
1 <i<I ae H(G/B) ® R[{¢;},h]. The isomorphism type of the D-module E corre-

sponding to x is uniquely determined by the hypotheses of Theorem 1.1, as the following
proposition shows:

Proposition 2.1. If x is a product with the properties stated in Theorem 1.1, then the map
¢:D— H*(G/B) @R[{¢},h] given by
¢ 0
FRQ:} AR} ) = f({Qi} AP} h).1 = f({a}, {os, * +hQia—q}7 h).1
18 surjective and induces an isomorphism of D-modules
(10) D/I ~F,

where I is the left sided ideal of D generated by the quantum integrals of motion of the Toda
lattice (see above).

Proof. We will use the grading on H*(G/B) ® R[{¢}, i] induced by the usual grading on
H*(G/B), deg ¢; = 4 and deg h = 2. Combined with the grading defined by (9), this makes
¢ into a degree preserving map (more precisely, it maps a homogeneous element of D to a
homogeneous element of the same degree in H*(G/B) ® R[{¢}, h]).

Let us prove first the surjectivity stated in our theorem. It is sufficient to show that
any homogeneous element a € H*(G/B) ® R[{¢}, ] can be written as f({Q;},{F}, h).1.
We proceed by induction on dega. If dega = 0, everything is clear. Now consider a €
H*(G/B) ® R[{¢;}, h| a homogeneous element of degree at least 2. By a result of Siebert
and Tian [Si-Ti], we can express

a = g({Qi}, {Usi*}’ h)

for a certain polynomial g. We have
0
a—g({Qi}, {Fi},h).1 = a—g({a} {os * +hqia_q.}’ h).1 = hb,
where b € H*(G/B) ® R[{¢;}, h] is homogeneous of degree dega — 2 or it is zero. We use the
induction hypothesis for b.

We proved in [Ma3] (see the proof of Lemma 4.5) that the generators Dy, = D ({Q:}, { P}, h),
1 <k <, of the ideal 7 satisfy

(11) Dp({Qi},{Fi},h).1=0.
If we let h approach 0 in (11) we obtain the relations
(12) Dk({ql}> {Usi*}’ O) =0,

1 < k <. They generate the whole ideal of relations in the ring (H*(G/B) ® R[{g;}], *).
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We need to show that if D is an element of D with the property that
(13) D({Q:},{Fi},h).1=0

then D € 7. Because the map ¢ is degree preserving, we may assume that D is homogeneous

and proceed by induction on deg D. If deg D = 0, i.e. D is constant, then (13) implies D = 0,
hence D € Z. It now follows the induction step. From

D.1=D({q},{os * +hq,-ai}, h).1 =0,
qi

for all h, we deduce the relation D({¢;},{os,x},0) = 0 in the ring (H*(G/B) ® R[{¢}],*).
Consequently we have the following polynomial identity

D({a} 01,00 = Y fil{a:}, (A De({ai}, (A}, 0),

for certain polynomials fi.. By using the commutation relations (8), we obtain the following
identity in D:

D@} {P},0) = > f{Q:},{P.})Dr({Q:}, {P},0) mod h
=3 f({Q:i} APHDL({Qi}. {P;}, h) mod k.

In other words,

DUQ:}. AP}, h) =Y f{Q:} APH D@}, (P}, h) + hD'({Qi} . { P} 1),

for a certain D' € D, with deg D’ < deg D. From (12) and (13) we deduce that

D'({Q:i},{P} h).1=0
Since deg D' < deg D, we only have to use the induction hypothesis for D" and get to the
desired conclusion.

O

Note that (10) is also an isomorphism of R[{Q;}, h]-modules. Since the actual quantum
product o satisfies the hypotheses of Theorem 1.1, we deduce that the dimension of D/Z as
an R[{Q;}, h]-module equals |[W|. Let us consider the “standard monomial basis” {[C,,] :
w € W} of D/T over R{Q;}, h] with respect to a choice of a Grébner basis of the ideal Z (for
more details, see Guest [Gu, section 1] and the references therein). Any C,, is a monomial
in P, ..., P, and the cosets of the monomials

Cw:Cw()\l,...,)\l), weWw
in H*(G/B) = S(t*)/S(t")V = R[{\;}]/Iw are a basis. We will need the following result.

Proposition 2.2. There exists a unique basis {[Cy] : w € W} of D/T over R[{Q;}, h] with
the following properties:

(i) for all w € W the element C,, = Co({Qs}, {P;}, k) of D is homogeneous of degree
2 deg ¢, with respect to the grading defined by (9)
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(ii) for all w € W we have
Cw ({0}, {\:}, h) = ¢, mod Ly
in particular Cy, ({0}, {\;}, R)mod Iy is independent of h

iii) the elements (Qf )IS'sl o 1 Qr etermined by
iii) the el Q) asy of RIQ Q. h] d d b

vw

are independent of h.

Proof. In order to show that such a basis exists, we consider the isomorphism
¢:D/T — H"(G/B) ®R[{q:}, 1]

induced by the actual quantum product o via Proposition 2.1. The basis {[c,] : w € W} of
the right hand side induces the basis {[C] = ¢ ([cw]) : w € W} of D/T over R[{Q;}, A]. Tt
is obvious that the latter basis satisfies (i) and (iii). In order to show that it also satisfies
(ii), we consider the following commutative diagram:

D/I = H'(G/B) ® R[{a:}, ]
Y1\ >
H*(G/B) ® R[A]
where v is the canonical projection and ¢, : D/Z — H*(G/B)®R[h] = (R[{\:}]/Iw) QR[A]

is given by

Note that 1 is well defined, as for any & = 1,2,...,1, the polynomial Dy({0},{\;},h) is
independent of f, being equal to wuy, the k-th fundamental W-invariant polynomial (see [Ma
2, section 3]). We observe that

[Cu ({0}, {Ai}, )] = ¥1[Clu] = dafew] = [cul,
hence condition (ii) is satisfied.

In order to show that there exists at most one such basis, one can use the method of
[Am-Gu, section 2]. More precisely, we only need to note that the PDE system presented
there has at most one “admissible” solution. O

Now we can prove our main result:
Proof of Theorem 1.1 Let x be a product with the properties stated in Theorem 1.1.
Consider the isomorphism of D-modules
¢:D/T — H*(G/B) @ R[{¢},h]

given by Proposition 2.1. The basis {[c,] : w € W} of the right hand side induces the basis
{[Cw] = 7Y [cw]) : w € W} of D/T over R[{Q;},h]. Tt is obvious that the latter satisfies
the hypotheses (i) and (iii) of Proposition 2.2. We show that it also satisfies (ii) by using
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the argument already employed in the first part of the proof of Proposition 2.2. Now from
Proposition 2.2, we deduce that

[Cul = [Cul,

for w € W, where the basis {[C,,] : w € W} is induced by the actual quantum product o.
Now, since ¢ is an isomorphism of D-modules, ¢([C,,]) = [c,] and ¢(P;) = [\, we deduce
that the matrix of [A\;]x with respect to the basis {[c,] : w € W} is the same as the matrix
of P; with respect to the basis {[C,] : w € W}. Consequently we have

for all a € H*(G/B) ® R[q, . . ., q]. Hence the products x and o are the same. O

3. QUANTIZATION MAP FOR Fl,

In the case G = SL(n,C), the resulting flag manifold is F,, which is the space of all
complete flags in C™. Borel’s presentation (see eq. (1)) in this case reads

H*(Fl,) =R\, ..., M)/ (1n) >2,

where (/,,)>2 denotes the ideal generated by the nonconstant symmetric polynomials of degree
at least 2 in the variables

Tyi= —AL T = AL — Aoy T 1= Ao — A1, T = A1

Equivalently, we have
H*(Fl,) =Rlzy,...,z,]/1,

where [, denotes the ideal generated by the nonconstant symmetric polynomials of degree

at least 1 in the variables x1, ..., z,. For any k € {0,1,...,n} we consider the polynomials
ek ... ek in the variables 1, ..., zy, which can be described by
det 0 zo ... 0 + ul, :Ze;cluk—i'
0 ... 0 =

For 7y,...,4,-1 € Z such that 0 <i; < j, we define

Ciyip_1 — 6}1 P e?n_,ll
These are called the standard elementary monomials. It is known (see e.g. [Fo-Ge-Po,
Proposition 3.4]) that the set {[e;,.i, ,] : 0 <1i; < j} is a basis of H*(F1,).
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We also consider the polynomials® €&, ... é¥ in the variables x1, ..., 24, q1, . .., gx_1, which
are described by

T aq1 0 e 0
—1 ) (0] e 0 k '
det || o o k] =D e
0 ... =1 Zp_1 Qe i=0
0 c. 0 -1 Tk
For iy, ...,4,-1 such that 0 <i; < j, we define the quantum standard elementary monomials
éil___in71 — élll ceey A:Lnill

By a theorem of Ciocan-Fontanine [Ci] (in fact Kim’s theorem for G = SL(n, C), see section
1), we have the following isomorphism of Rq, ..., ¢,—1]-algebras

(14) (H*(Fl,) @ Rlq1,...,qu-1],0) 2 QH*(Fl,,) =Rz, ... Zn,q1y ...y qn-1]/(ET, ... E0),

which is canonical, in the sense that [z;] is mapped to [z;],. According to [Fo-Ge-Po], we
will call this the quantization map. Since the conditions (4) and (5) are satisfied, we deduce
that {[é;,..i, 1] © 0 <4; <j}isabasis of QH*(FL,) over Rg, ..., ¢,—1]. We also point out
the obvious fact that {[e;, i, ,] @ 0 <i; < j}is a basis of H*(Fl,) ® Rlq1,. .., gn—1] over
Rlg1,--.,qn_1]. The goal of this section is to give a different proof to the following theorem
of Fomin, Gelfand, and Postnikov.

Theorem 3.1. (see [Fo-Ge-Po, Theorem 1.1]). The quantization map described by equation
(14) sends [ei,..i,_,] 0 [€iy i1 ]q-

The main instrument of our proof is the D-module D/Z defined in section 2. In this case
(i.e. G = SL(n,C)) we can describe it explicitly, as follows: D is the (noncommutative)
Heisenberg algebra defined at the beginning of section 2, where [ = n — 1. The left ideal 7
of D is generated by &7, ...,&)_,, where

» “n—1»
—-P Q1 0 0
-1 Pl - P2 Qg e 0 n
det + ul, :Zé’i",u”_i.
0 c. -1 Pn_g — Pn—l Qn—l =0
0 0 -1 P,
In fact we will need more general elements of D, namely, for each k£ € {1,...,n — 1}, we
consider the elements £F of D, with 0 < < k, given by
—-P (O} 0 0
-1 P—-—P Q- - 0 k
det + ply :Z&k,uk_i.
0 N -1 Pk_g - Pk—l Qk—l =0
0 o 0 -1 P._1— P,

4These are the polynomials EF of [Fo-Ge-Po.
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One can easily see that when we expand the determinant in the left hand side of the last
equation, we will have no occurrence of P;@); or Q;FP;, 1 < j < k — 1. This means that the
lack of commutativity of (); and P; creates no ambiguity in the definition of £,...,&)_;.
We can also deduce that each of £F ... EF is a linear combination of monomials in the
variables {P,..., Py, Q1,...,Qk_1}, with no ocurrence of P;Q; or );F; (i.e. the order of
factors in each monomial is not important). As a consequence, the following recurrence
formula [Fo-Ge-Po, equation (3.5)] still holds:

(15) EF =&+ X & + Q1 EF Y,

where X stands for P,_; — P, and, by convention, EJ’? =0, unless 0 < 7 < k. It is worth
mentioning the following commutation relations, which will be used later:

(16) (X4, €] =0, [QrE]=0,
whenever [ < k — 1. We also note that f = 1 and £f = — P, (where P, is by convention
equal to 0). We will prove the following result.
Lemma 3.2. The elements EF,...,EF | of D commute with each other.
Proof. Consider the coordinates so,...,s,_; on R¥. Following [Kim-Joe], we consider the
differential operators Dj(ha%), e hasf,l ,e51750 eSk=17%k=2) given by
h e 0 0 |
50
1 fipe e 0 !
0 . -1 hy 0 gsh-1-%k-2 i=0
Sk—2
0o ... 0 -1 hz2
L Sk—1 i

By [Kim-Joe, Proposition 1], we have [DF, Df] =0 for all 0 <1,j < k. In order to prove our
lemma, it is sufficient to note that if we make the change of coordinates

S1— 80 =1t1,...,8k—1 — Sg—2 = lp—1, —Sp—1 = I,
we obtain
0 0 0 0 0 0 0 0
h—=-h—=—-P h—=h——-h—=P,—P,,....h = —h— =P, —P,
dso ot Vs ot oty N TP s, ot ot bR

where we have used the presentation of D given by P, = h%, Q=€ 1<i<n-—1. O

The following technical result will be needed later.

Lemma 3.3. We have
(17) (€5 EF = [E55, €.

Proof. We prove this by induction on k& > 0. For k& = 0, the equation is obvious (by the
convention made above, we have & = 0). It follows the induction step. We use the recurrence
formula (15). This gives

(EFE) = (€8 + X EF + QuEF) X = [Quel! €8],

J+10 %4 7—1>%4 7—1>%4



THE QUANTUM COHOMOLOGY RING OF G/B 13

We continue by using again equation (15) and obtain

[Qk 1 gkl x, ek 11+Qk &2
[Qk;Xk]gk '+ [QiE)” Qk 1E
[Qkan]gk 15k 11+Qk[ 11>Qk 152k 22]
= [Qr, XiEF 15k o Qn [5k 11>51k e — X&)
= I&;
= I€;

j
Qr, X1 15k + Qk([ - L EN - € XnEET)
Qr, Xpl € EFT + QulEf ), EN

Here we have used the commutation relations ( 16) several times. Similarly, we obtain
(€85 €] = [Qn XelEF T ES + QulERT €],

We use the induction hypothesis to finish the proof. O

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let wy denote the matrix of multiplication by [yx], with respect to
the basis {[é;, i, .]q © 0 <1i; < j} of QH*(F1I,) (see equation (14)). More precisely, the

entries of w; are polynomials in ¢, ..., q,_1, determined by
. o151 1 [ A
(18) [Yklqliy..in_1]q = Z W/? R et tilg-

l17~~~7ln71

According to Corollary 1.2, it is sufficient to show that

0 0
19 W= —uw;,
(19) ot 7 ot
for 1 < 1,5 <n — 1, where as usually, we use the convention ¢; = €. For 41, ...,17,_1 such

that 0 <i; < j, we consider
Eiyi =& ErE

11712 In—1"

In order to prove equation (19), it is sufficient to prove the following claim.
Claim. In D/Z we have

(20> [Pk] 1. dn— 1 - Z Q“ At 1[811 dn— 1]

l1,e5ln—1

i1edn—1,l1.ln—1

where each €2 is obtained from wlil"'i"’l’ll"'l"’l by the modification Q; — ¢;.

Indeed, if we make the usual identifications P, = ha%y Qr=c¢e" 1<k <n-—1, then (20)
implies that the connection

n—1
d+ Z —Qdty,
k=1

is flat (see e.g. [Gu, Proposition 1.1]) for all values of /i, which implies (19). The proof of the
claim relies on a noncommutative version of the quantum straightening algorithm of Fomin,
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Gelfand, and Postnikov [Fo-Ge-Po]. The key equation is the following.
(21) EFENE + ELLEF + QuEITEF = EFELT + EFLEF + QuENTES.

We note that this is the same as equation (3.6) in [Fo-Ge-Po]. The difference is that here we
work in the algebra D, which is not commutative, so it is not a priori clear that (21) still
holds. In order to prove it, we use equation (15) twice and obtain:

(gfill - 8f+1)5f = (Xk+15yk + ngf—_ll)gf’
and
(EER" = ERLEF = (X &EF + QrEFTNEL.
If we subtract the second equation from the first one, we obtain:
EEHIEE _ ghtlek — gk gh _ gk, EF 1 QuERES — ELED).
Now the left hand side can be written as
EFERN — EFESH +[EEN € — (€5 €N = €7 e — EFefH

where we have used Lemma 3.3. Equation (21) has been proved. Now we can use it exactly
like in the commutative situation, described in [Fo-Ge-Pol, in order to obtain the expansion
of the product of P, = —&EF and &;, ;. , = 5}1 . .5[7‘:. More precisely, we begin with

Py vy = EL . EETIPEREN gl — gl | ghlghek gl | g

k-1 U Tl n Uk k41 tn—1"

and then we use (21) repeatedly. The resulting coefficients in the final expansion will be
the same as in the commutative situation. This finishes the proof of the claim, and also of
Theorem 3.1. U

4. APPENDIX

We will give simple proofs of properties (a) and (b) in Theorem 1.1 for the actual quantum
product o. They are both straightforward consequences of the following “divisor property”
(see [Fu-Pa, equation (40)] for a more general version of this formula):

(22) (o5;l00l00)a = di{ow]ow)a,

forany 1 < j < I, d = (dv,...,d;)) € Hy(G/B,Z), and v,w € W. Here (0,|0,)q is
the two-point Gromov- Witten invariant, which represents the number of holomorphic maps
o : P! — G/B with ¢.([P']) = d in Hy(G/B) and such that p(P') intersects general
translates of the Schubert varieties dual to o, and o,, modulo PSL(2,C) (the latter group
acts on ¢ by reparametrizing it).

First we prove condition (a), i.e. the flatness of the Dubrovin connection. This is

1
Vh:d—l—ﬁu),

where w is the 1-form on H?(G/B) with values in End(H*(G/B)) given by
w(X,Y)=XoY,
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for t = (t1,...,t;) € H*(G/B), X € H*(G/B) and Y € H*(G/B). Here the convention
g =c¢€, 1<i<lI

is in force. Note that the w can be expressed as

l
W = Zwidti,
=1

where w; denotes the matrix of the operator o,,0 on H*(G/B) with respect to the basis
consisting of the Schubert classes.

Lemma 4.1. The Dubrovin connection V" is flat for any h € R\ {0}, i.e. we have

(23) dv=wAw=0
Proof. The fact that dw = 0 amounts to

0 0

ot; 7 oty

which is equivalent to
di(USj o Uw)d - dj(asi o Uw)d
for any w € W and any d = (dy,...,d;), hence, by (2), to
di<08j |ow|ow)a = dj<0-s@-|0w|o'v>d'
The latter equation is an obvious consequence of the divisor rule (22). The equality wAw =0

is equivalent to w;w; = wjw;, 1 < 7,5 < [; this follows immediately from the fact that the
product o is commutative and associative. O

Next we turn to property (b).

Lemma 4.2. We have
! !

(24) Z (o, O@Y)Usz' ©0s; = Z(O‘ivu ;) g

ij=1 i=1
Proof. The crucial point of the proof is the following equation.
(25) Os, OO'SJ. :O'siO'Sj +52]q]
In turn, by (2) this amounts to the fact that if e, := (0,...,0,1,0,...,0) (where 1 is on the
k-th position), then the homology class (o5, © 0y, )e, € H°(G/B) satisfies

((Usi © 08j>6k7 PD[pt]) = 5ijk7

where, by definition, d;;; is 1 if i = j = k and 0 otherwise, and PD|pt| denotes the (top-

dimensional) cohomology class which is Poincaré dual to a point. By (2) and the divisor rule
(22), we only need to prove that

(05,|PD[pt])e, = 1.

But this follows immediately from the fact that the Poincaré dual of the homology class e;
is 0y,s;, and the intersection pairing of the latter with o, equals 1.
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Now (25) implies (24), because

l

> (o af)oso, =0,

ij=1

which in turn follows from the fact that the polynomial S} . (@), af)AiA; € S(t) is W-
invariant (being just the squared norm on t).

Remark.

[Am-Gu]
[Be-Ge-Ge]
[Bo]
[Ci]
[Du]
[Fo-Ge-Po]

[Fu-Pa|

[Kim)]
[Kim-Joe]

[Mal]

[Ma2]

h,j=1
U

Another proof of the last lemma can be found in [Mal, section 3].

REFERENCES

A. Amarzaya and M. A. Guest, Gromov-Witten invariants of flag manifolds, via D-modules,
Jour. London Math. Soc. (2) 72 (2005), 121-136

I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Schubert cells and cohomology of the space
G/ P, Russian Math. Surveys 28 (1973), 1-26

A. Borel, Sur la cohomologie des espaces fibrés principauz et des espaces homogénes des groupes
de Lie compacts, Ann. of Math. 57 No. 2 (1953), 115-207

I. Ciocan-Fontanine, The quantum cohomology ring of flag varieties, Trans. Amer. Math. Soc.
351 (1999), no. 7, 2695-2729

B. Dubrovin, The geometry of 2D topological field theories, Integrable Systems and Quantum
Groups, Lecture Notes in Mathematics, Vol. 1620, Springer-Verlag, New York, 1996, 120-348
S. Fomin, S. Gelfand, and A. Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc.,
10 (1997), 565-596

W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology Algebraic
geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., 62, Part 2, editors J. Kollar, R. Lazars-
feld and D.R. Morrison, 1997, 45-96

W. Fulton and C. Woodward, On the quantum product of Schubert classes, J. Algebraic Geom.
13 (2004), 641-661

M. A. Guest, Quantum cohomology via D-modules, Topology 44 (2005), 263-281

H. Iritani, Quantum D-module and equivariant Floer theory for free loop spaces, Math. Z. 252
(2005), 577-622

B. Kim, Quantum cohomology of flag manifolds G/B and quantum Toda lattices, Ann. of Math.
149 (1999), 129-148

B. Kim and D. Joe, Equivariant mirrors and the Virasoro conjecture for flag manifolds, Int.
Math. Res. Not. 15 (2003), 859882

A.-L. Mare, On the theorem of Kim concerning QH*(G/B), Integrable systems, topology and
physics, editors M. Guest, R. Miyaoka and Y. Ohnita, Contemp. Math. 309, Amer. Math. Soc.
(2002), 151-163

A.-L. Mare, Polynomial representatives of Schubert classes in QH*(G/B), Math. Res. Lett. 9
(2002), 757770

A.-L. Mare, Relations in the quantum cohomology ring of G/B, Math. Res. Lett. 11 (2004),
3548

A.-L. Mare, The combinatorial quantum cohomology ring of G/B, Jour. Alg. Comb. 21 (2005),
331-349

D. Peterson, Lectures on quantum cohomology of G/P, M.I.T. 1996

B. Siebert and G. Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa
and Intriligator, Asian J. Math. 1 (1997), 679-695



THE QUANTUM COHOMOLOGY RING OF G/B 17

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF REGINA, COLLEGE WEST 307.14,
REGINA SK, CANADA S4S 0A2

E-mail address: mareal@math.uregina.ca



