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The adjoint orbits of compact semisimple Lie groups K are called complex
flag manifolds. Any such manifold admits a standard embedding in Lie(K); if
the latter is equipped with an Ad(K)-invariant inner product, the embedding
is taut, i.e. all height functions are perfect over Z. At the same time, an
adjoint orbit is of the type Kc/P , where P is a parabolic subgroup of Kc;
hence it is a complex manifold. In fact, the natural KKS-symplectic form
makes it into a Kähler manifold. Now there is a nice observation which says
that the gradient flows with respect to the Kähler metric of height functions
are just 1-parameter subgroups of Gc. A proof of this fact has been sketched
by M. Guest and Y. Ohnita in the Appendix of [2]. The main goal of these
notes is to give all details of their proof. At the end I will also make a
reference to [1], where J. Eschenburg and myself dealt with flow lines on real
flag manifolds: in the particular case of complex flag manifolds, I will show
how to recover the theorem of Guest and Ohnita.

Let K be a compact semisimple Lie group of Lie algebra k, and T ⊂ K a
maximal torus of Lie algebra t. Consider the adjoint orbit M = Ad(K)(xo)
for xo ∈ k. If G = KC is the complexification of K, then G/K is a non-
compact symmetric space and

g = k + ik

is a Cartan decomposition of g = Lie(G) = k ⊗ C (the involution σ is just
the complex conjugation). Since M is — up to a multiple of i — an isotropy
orbit of G/K, the results of the previous section can be applied here, too.
The goal of this section is to point out that there exists already a natural
metric on M with the property that the lines of steepest descent of the height
functions with respect to it are orbits of one-parameter subgroups of G —
namely the Kähler metric (cf. [2]).

1



The complex structure J on M is an important ingredient. It can be
defined as follows: Start by fixing to ⊂ k a maximal abelian subspace with
xo ∈ to. For any x ∈ M , take t a maximal abelian subspace of k such that
xo and x, respectively to and t are Ad-conjugate by the same element of K.
The root decomposition of g corresponding to t is g = t⊗C+

∑
α∈R

gα where
the roots α are linear functions on t with the property that

gα = {z ∈ g; [ξ, z] = iα(ξ)z, ∀ξ ∈ t}

is nonzero. Let n− =
∑

α(x)>0 gα and consider the complex subgroup

H = {g ∈ G; Ad(g)(x + n−) = x + n−}

of G, where C = {k ∈ K; Ad(k)x = x}. As in section 3 of [1], H is inde-
pendent on the choice of t. Like in Lemma 3.1 of [1], the exists a natural
diffeomeorphism M ≃ G/H which maps x to the coset of e and induces in
this way a complex structure on TxM . In order to describe it more precisely,
take v ∈ Tx(M) = [x, k] and its decomposition v =

∑
+(zα + z̄α), where

zα ∈ gα and
∑

+ denotes
∑

α(x)>0. We must have

J(v) = Jx(v) = Jx

∑

+

(zα + z̄α) =
∑

+

i(zα − z̄α).

Let us note the following property of J :

Lemma 0.1 The infinitesimal action of G on M satisfies

J(q.x) = (iq).x

for any x ∈ M and q ∈ k.

Proof. We can write q =
∑

+(zα + z̄α), with zα ∈ gα. We have (iq).x = r.x,
where r ∈ k has the property iq − r ∈ h. But one can easily see that r =∑

+ i(zα − z̄α) satisfies this property. Hence (iq).x = [x, r] =
∑

+ −α(x)(zα +
z̄α). The last expression is obviously the same as

J(q.x) = Jx[x, q] = Jx

∑

+

α(x)i(zα − z̄α).
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Let us fix a K-invariant inner product 〈 , 〉 on k (e.g. the negative of
the Killing form). There exists a natural symplectic form ω on M , which is
given by

ωx([x, u], [x, v]) = 〈x, [u, v]〉 = 〈[x, u], v〉

for any x ∈ M and any two tangent vectors [x, u], [x, v] ∈ TxM , where
u, v ∈ k. The symplectic form ω and the complex form J make M into a
Kähler manifold. The corresponding Kähler metric ( , ) is defined by

(X, Y ) = ωx(X, JY ), (1)

for any two vectors X, Y ∈ Tx(M). Let us consider the action of K on M and
the corresponding momentum map µ : M → k∗. One can see that for any
q ∈ k, the map µ(·)(q) := µq : M → R is just the height function hq = 〈q, ·〉.
This means that we must have

d(hq)x = ωx([x, q], ·).

From (1) we deduce that the gradient of hq with respect to the Kähler metric
is

∇(hq)x = −J [q, x],

x ∈ M . We would like to find the corresponding gradient lines x(t), i.e.
solutions of the equation

x′(t) = −J [q, x(t)].

By Lemma 0.1, we can express this differential equation in terms of the
infinitesimal action of G on M , as follows:

x′(t) = (iq).x(t).

The solution of this equation is obviously

x(t) = exp(itq).x(0),

where the right hand side one uses the action of G on M .
In fact we can obtain the same result if we use Theorem 4.1 of [1] and

the following result:
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Proposition 0.2 If M is an adjoint orbit, then the metric s on M defined
by Theorem 4.1 of [1] is the same as the Kähler metric.

Proof. Recall that for any x ∈ M we have

Tx(M) =
∑

+

(gα + g−α) ∩ k

and the metric s is defined by

〈v, w〉s =
∑

+

1

α(x)
〈vα, wα〉.

If α is an arbitrary root with α(x) > 0, take zα, ζα ∈ gα, then zα + z̄α and
ζα + ζ̄α the corresponding tangent vectors. Their product with respect to the
Kähler metric (see (1)) is

(zα + z̄α, ζα + ζ̄α) = ωx(zα + z̄α, i(ζα − ζ̄α))

= −
1

α(x)2
ωx([x, i(zα − z̄α)], [x, ζα + ζ̄α])

= −
1

α(x)2
〈[x, i(zα − z̄α)], ζα + ζ̄α〉

=
1

α(x)
〈zα + z̄α, ζα + ζ̄α〉

= 〈zα + z̄α, ζα + ζ̄α〉s

By Theorem 4.1 of [1], the gradient lines of the function f(x) = 〈−iq, ix〉 =
〈q, x〉, x ∈ M , are

x(t) = exp(itq)x(0),

as expected.
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