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The adjoint orbits of compact semisimple Lie groups K are called complex
flag manifolds. Any such manifold admits a standard embedding in Lie(K); if
the latter is equipped with an Ad(K)-invariant inner product, the embedding
is taut, i.e. all height functions are perfect over Z. At the same time, an
adjoint orbit is of the type K°/P, where P is a parabolic subgroup of K¢;
hence it is a complex manifold. In fact, the natural KKS-symplectic form
makes it into a Kédhler manifold. Now there is a nice observation which says
that the gradient flows with respect to the Kahler metric of height functions
are just 1-parameter subgroups of G¢. A proof of this fact has been sketched
by M. Guest and Y. Ohnita in the Appendix of [2]. The main goal of these
notes is to give all details of their proof. At the end I will also make a
reference to [1], where J. Eschenburg and myself dealt with flow lines on real
flag manifolds: in the particular case of complex flag manifolds, I will show
how to recover the theorem of Guest and Ohnita.

Let K be a compact semisimple Lie group of Lie algebra ¢, and T' C K a
maximal torus of Lie algebra t. Consider the adjoint orbit M = Ad(K)(z,)
for z, € &. If G = K© is the complexification of K, then G/K is a non-
compact symmetric space and

g==t+it

is a Cartan decomposition of g = Lie(G) = € ® C (the involution o is just
the complex conjugation). Since M is — up to a multiple of i — an isotropy
orbit of G/K, the results of the previous section can be applied here, too.
The goal of this section is to point out that there exists already a natural
metric on M with the property that the lines of steepest descent of the height
functions with respect to it are orbits of one-parameter subgroups of G —
namely the Kéhler metric (cf. [2]).



The complex structure J on M is an important ingredient. It can be
defined as follows: Start by fixing t, C € a maximal abelian subspace with
z, € t,. For any x € M, take t a maximal abelian subspace of £ such that
x, and z, respectively t, and t are Ad-conjugate by the same element of K.
The root decomposition of g corresponding to tis g = t@C+)_ . 8o Where
the roots « are linear functions on t with the property that

ga ={z €[, 2] =ia(§)z, VE €t}

is nonzero. Let n_ = Za(x)>0 g and consider the complex subgroup
H={geGAdg)(z+n)=z+n_}

of G, where C' = {k € K;Ad(k)r = x}. As in section 3 of [1], H is inde-
pendent on the choice of t. Like in Lemma 3.1 of [1], the exists a natural
diffeomeorphism M ~ G/H which maps = to the coset of e and induces in
this way a complex structure on T, M. In order to describe it more precisely,
take v € T,(M) = [z,¥] and its decomposition v = ) (24 + Za), Where
Zo € go and ), denotes >, .. We must have

J) = Jo(0) = Jo > (20 +Za) = > iz — Za).

_l’_

Let us note the following property of J:

Lemma 0.1 The infinitesimal action of G on M satisfies

J(q.x) = (ig).x

for any x € M and q € ¢.

Proof. We can write ¢ = ) (24 + Z4), With 2z, € go. We have (ig).z = r.z,
where r € £ has the property ig — r € h. But one can easily see that r =
> i(zq — Zo) satisfies this property. Hence (ig).x = [x,r] =Y, —a(x)(za +
Zy)- The last expression is obviously the same as

J(qz) = Jol2,ql = J, Za(ip)i(za — Za)-



O
Let us fix a K-invariant inner product ( , ) on £ (e.g. the negative of
the Killing form). There exists a natural symplectic form w on M, which is
given by
wa ([, u], [z, v]) = (2, [u,v]) = ([z, u],v)
for any x € M and any two tangent vectors [x,u|,[x,v] € T,M, where
u,v € €. The symplectic form w and the complex form J make M into a
Kéhler manifold. The corresponding Kéhler metric ( , ) is defined by

(X,Y) = w, (X, JY), (1)

for any two vectors X, Y € T, (M). Let us consider the action of K on M and
the corresponding momentum map p : M — €. One can see that for any
q € ¢, the map u(-)(q) := p9: M — R is just the height function h, = (g, -).
This means that we must have

d(hg)e = we ([, ql, ).

From (1) we deduce that the gradient of h, with respect to the Kéhler metric
is

V(hg)oe = —Jlg, 2],

x € M. We would like to find the corresponding gradient lines x(t), i.e.
solutions of the equation

'(t) = =Jlg, =(1)].

By Lemma 0.1, we can express this differential equation in terms of the
infinitesimal action of G on M, as follows:

a'(t) = (iq)-x(t).
The solution of this equation is obviously
x(t) = exp(itq).z(0),

where the right hand side one uses the action of G on M.
In fact we can obtain the same result if we use Theorem 4.1 of [1] and
the following result:



Proposition 0.2 If M is an adjoint orbit, then the metric s on M defined
by Theorem 4.1 of [1] is the same as the Kdhler metric.

Proof. Recall that for any x € M we have

Tx(M) = Z(ga + g—a) Nt

_l’_

and the metric s is defined by

1
(v, w)g = E (Vey, W)
a(z)
+

If a is an arbitrary root with a(x) > 0, take z4, (s € @a, then z, + Z, and
(o + (o the corresponding tangent vectors. Their product with respect to the
Kahler metric (see (1)) is

(Za + Zq, Ca + éa) - wm(za + Za, i(ca - éa))

1
— _W%([x (20 = Za)], [2, Ca + Cal)
1
— _a(x)2<[$ (20 = Za)], Ca + Ca)
1
g a(z) <ZO! + Zom Coc + COC>

- <Za + Zom Coc + an)s

By Theorem 4.1 of [1], the gradient lines of the function f(x) = (—iq, izx) =
(q,z), x € M, are
w(t) = exp(itq)z(0),

as expected.
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