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Abstract. Let P = G/K be a semisimple non-compact Riemannian symmetric space,
where G = I0(P ) and K = Gp is the stabilizer of p ∈ P . Let X be an orbit of the (isotropy)
representation of K on Tp(P ) (X is called a real flag manifold). Let K0 ⊂ K be the stabilizer
of a maximal flat, totally geodesic submanifold of P which contains p. We show that if all
the simple root multiplicities of G/K are at least 2 then K0 is connected and the action
of K0 on X is equivariantly formal. In the case when the multiplicities are equal and at
least 2, we will give a purely geometric proof of a formula of Hsiang, Palais and Terng
concerning H∗(X). In particular, this gives a conceptually new proof of Borel’s formula for
the cohomology ring of an adjoint orbit of a compact Lie group.
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1. Introduction

Let G/K be a non-compact symmetric space, where G is a non-compact connected
semisimple Lie group and K ⊂ G a maximal compact subgroup. Then K is connected
[He, Thm. 1.1, Ch. VI] and there exists a Lie group automorphism τ of G which is involu-
tive and whose fixed point set is Gτ = K. The involutive automorphism d(τ)e of g = Lie(G)
induces the Cartan decomposition

g = k ⊕ p,

where k (the same as Lie(K)) and p are the (+1)-, respectively (−1)-eigenspaces of (dτ)e.
Since [k, p] ⊂ p, the space p is AdG(K) := Ad(K)-invariant. The orbits of the action of
Ad(K) on p are called real flag manifolds, or s-orbits. The restriction of the Killing form of
g to p is an Ad(K)-invariant inner product on p, which we denote by 〈 , 〉.

Fix a ⊂ p a maximal abelian subspace. Recall that the roots of the symmetric space G/K
are linear functions α : a → R with the property that the space

gα := {z ∈ g : [x, z] = α(x)z for all x ∈ a}

is non-zero. The set Π of all roots is a root system in (a∗, 〈 , 〉). Pick ∆ ⊂ Π a simple root
system and let Π+ ⊂ Π be the corresponding set of positive roots. For any α ∈ Π+ we have

gα + g−α = kα + pα,

where kα = (gα + g−α) ∩ k and pα = (gα + g−α) ∩ p. We have the direct decompositions

p = a +
∑

α∈Π+

pα, k = k0 +
∑

α∈Π+

kα,

where k0 denotes the centralizer of a in k. The multiplicity of a root α ∈ Π+ is

mα = dim kα + dim k2α.
1
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We note that this definition is slightly different from the standard one (see e.g. [Lo, Ch. VI,
section 4]) which says that the multiplicity of α is just dim kα.

Now k0 is the Lie algebra of the Lie group K0 := CK(a) as well as of K ′

0 := NK(a). One
can see that K0 is a normal subgroup of K ′

0; the Weyl group of the symmetric space G/K is

W = K ′

0/K0.

It can be realized geometrically as the (finite) subgroup of O(a, 〈 , 〉) generated by the
reflections about the hyperplanes ker α, α ∈ Π+.

Take x0 ∈ a and let X = Ad(K)x0 be the corresponding flag manifold. The goal of our
paper is to describe the cohomology, always with coefficients in R, of X. The first main
result concerns the action of K0 on X.

Theorem 1.1. If the symmetric space G/K has all root multiplicities mα, α ∈ ∆, strictly
greater than 1 then:

(a) K0 is connected;

(b) the action of K0 on X = Ad(K)x0 is equivariantly formal, in the sense that

H∗

K0
(X) ≃ H∗(X) ⊗ H∗

K0
(pt)

by an isomorphism of H∗

K0
(pt)-modules;

(c) we have the isomorphisms of R-vector spaces

H∗(X) ≃
∑

w∈W

H∗−dw(w.x0), H∗

K0
(X) ≃

∑

w∈W

H∗−dw

K0
(w.x0).

Here

dw =
∑

mα

where the sum runs after all α ∈ Π+ such that α/2 /∈ Π+ and the line segment [x0, w.x0)
crosses the hyperplane ker α.

Remark. Let U be the (compact) Lie subgroup of GC whose Lie algebra is k ⊕ ip. Then
the manifold X = Ad(K)x0 is the “real locus” [Go-Ho], [Bi-Gu-Ho] of an anti-symplectic
involution on the adjoint orbit Ad(U)ix0 (see e.g. [Du, section 5]). The natural action of the
torus T := exp(ia) on this orbit is Hamiltonian. In this way, X fits into the more general
framework of [Go-Ho] and [Bi-Gu-Ho]. But these papers investigate X from the perspective
of the action of TR = T ∩K = T ∩K0, whereas we are interested here in the action on X of
a group which may be larger than TR, namely K0.

In the second part of our paper we will deal with the ring structure of the usual coho-
mology of X, under the supplementary assumption that the symmetric space has all root
multiplicities equal. By [He, Ch. X, Table VI], their common value can be only 2, 4 or 8.
An important ingredient is the action of W = K ′

0/K0 on X given by

(1) hK0.Ad(k)x0 = Ad(k)Ad(h−1)x0,

for any h ∈ K ′

0 and k ∈ K. By functoriality, this induces an action of W on H∗(X). We
also note that W acts in a natural way on a∗.
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Theorem 1.2. Assume that G/K is an irreducible non-compact symmetric space whose
simple root multiplicities are equal to the same number, call it m, which is at least 2. Take
X = Ad(K)x0.

(i) If x0 is a regular point of a, then there exists a canonical linear W -equivariant iso-
morphism Φ : a∗ → Hm(X). Its natural extension Φ : S(a∗) → H∗(X) is a surjective ring
homomorphism whose kernel is the ideal 〈S(a∗)W

+ 〉 generated by all nonconstant W -invariant
elements of S(a∗). Consequently we have the R-algebra isomorphism

H∗(X) ≃ S(a∗)/〈S(a∗)W
+ 〉.

(ii) If x0 is an arbitrary point in a, then we have the R-algebra isomorphism

H∗(X) ≃ S(a∗)Wx0/〈S(a∗)W
+ 〉,

where Wx0
is the W -stabilizer of x0.

Remark. Any real flag manifold X = Ad(K)x with the canonical embedding in (p, 〈 , 〉)
is an element of an isoparametric foliation [Pa-Te]. The topology of such manifolds, including
their cohomology rings, has been investigated by Hsiang, Palais and Terng in [Hs-Pa-Te] (see
also [Ma]). The formulas for H∗(X) given by Theorem 1.2 have been proved by them in
that paper. Even though we do use some of their ideas (originating in [Bo-Sa]), our proof is
different: they rely on Borel’s formula [Bo] for the cohomology of a generic adjoint orbit of
a compact Lie group, whereas we actually prove it.

Acknowledgements. I thank Jost Eschenburg for discussions about the topics of the
paper. I also thank Tara Holm as well as the referees for suggesting several improvements.

2. Symmetric spaces with multiplicities at least 2 and their s-orbits

Let G/K be an arbitrary non-compact symmetric space, x0 ∈ a and X = Ad(K)x0

the corresponding s-orbit. The latter is a submanifold of the Euclidean space (p, 〈 , 〉).
The Morse theory of height functions on X will be an essential instrument. The following
proposition summarizes results from [Bo-Sa] or [Hs-Pa-Te] (see also [Ma]).

Proposition 2.1. (i) If a ∈ a is a general vector (i.e. not contained in any of the hyperplanes
ker α, α ∈ Π+), then the height function ha(x) = 〈a, x〉, x ∈ X is a Morse function. Its
critical set is the orbit W.x0.

(ii) Assume that a and x0 are contained in the same Weyl chamber in a. Then the index
of ha at the critical point w.x0 is

(2) dw =
∑

mα

where the sum runs after all α ∈ Π+ such that α/2 /∈ Π+ and the line segment [a, wx0)
crosses the hyperplane ker α.

In the next lemma we consider the situation when all root multiplicities are at least 2.

Lemma 2.2. Assume that the root multiplicities mα, α ∈ ∆, of the symmetric space G/K
are all strictly greater than 1. Then:
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(i) for any general vector a ∈ a, the height function ha : X → R is Z-perfect,

(ii) the space K0 is connected,

(iii) if X = Ad(K)x0, then the orbit W.x0 is contained in the fixed point set XK0.

Proof. (i) According to [Ko, Theorem 1.1.4], there exists a metric on X such that if two
critical points x and y can be joined by a gradient line, then x = sγy, where γ ∈ Π+. By
(2), the difference of the indices of x and y is different from ±1. Because the stable and
unstable manifolds intersect transversally [Ko, Corollary 2.2.7], the Morse complex of ha has
all boundary operators identically zero, hence ha is Z-perfect.

(ii) Take a ∈ a a general vector. The height function ha on Ad(K)a is Z-perfect. From (2)
we deduce that H1(Ad(K)a, Z) = 0, thus Ad(K)a is simply connected. On the other hand,
the stabilizer CK(a) is just K0 (see e.g. [Bo-Sa]). Because K/K0 is simply connected and K
is connected, we deduce that K0 is connected.

(iii) The height function ha is Ad(K0)-invariant, thus Crit(ha) = W.x0 is also Ad(K0)-
invariant. The result follows from the fact that K0 is connected. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Point (a) was proved in Lemma 2.2 (ii).

(b) According to [Gu-Gi-Ka, Proposition C.25] it is sufficient to show that H∗

K0
(X) is free

as a H∗

K0
(pt)-module. In order to do that we consider the height function ha : X → R

corresponding to a general a ∈ a. We use the same arguments as in the proof of Lemma 2.2,
(i). The function ha is a K0-invariant. By the same reasons as above, the K0-equivariant
Morse complex [Au-Br, Sections 5 and 6] has all boundary operators identically zero. Thus
H∗

K0
(X) is a free H∗

K0
(pt)-module (with a basis indexed by Crit(ha) = W.x0).

(c) The space H∗(X) has a basis {[Xw.x0
] : w ∈ W}, where Xw.x0

is some dw-dimensional
cycle in X, w ∈ W . The evaluation pairing H∗(X)×H∗(X) → R is non-degenerate; consider
the basis of H∗(X) dual to {[Xw.x0

] : w ∈ W}, which gives one element of degree dw for each
w.x0. The result follows. �

3. Cohomology of s-orbits of symmetric spaces with uniform multiplicities

at least 2

Throughout this section G/K is a non-compact irreducible symmetric space whose simple
root multiplicities are all equal to m, where m ≥ 2; x0 ∈ a is a regular element and

X = Ad(K)x0 ≃ K/K0

is the corresponding real flag manifold. There are three such symmetric spaces; their compact
duals are (see e.g. [Hs-Pa-Te, Section 3]):

1. any connected simple compact Lie group K; we have m = 2; the flag manifold is
X = K/T , where T is a maximal torus in K;

2. SU(2n)/Sp(n) where m = 4; the flag manifold is X = Sp(n)/Sp(1)×n;
3. E6/F4 where m = 8; the flag manifold is X = F4/Spin(8).
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Let ∆ = {γ1, . . . , γl} be a simple root system of Π. To each γj corresponds the distribution
Ej on X, defined as follows: its value at x0 is

Ej(x0) = [kγj
, x0]

and Ej is K-invariant, i.e.

Ej(Ad(k)x0) = Ad(k)Ej(x0),

for all k ∈ K.

A basis of Hm(X) can be obtained as follows: Assume that x0 is in the (interior of the)
Weyl chamber C ⊂ a which is bounded by the hyperplanes ker γj, 1 ≤ j ≤ l. The Weyl
group W is generated by sj, which is the reflection of a about the wall ker γj, 1 ≤ j ≤ l. For
each 1 ≤ j ≤ l we consider the Lie subalgebra k0 + kγj

of k; denote by Kj the corresponding
connected subgroup of K. It turns out that the orbit Ad(Kj)x0 is a round m-dimensional
metric sphere in (p, 〈 , 〉). To any x = Ad(k)x0 ∈ X we attach the round sphere

Sj(x) = Ad(k)Ad(Kj)x0.

The spheres Sj are integral manifolds of the distribution Ej . We denote by [Sj] the homology
class carried by any of the spheres Sj(x), x ∈ X. It turns out that S1(x0), . . . , Sl(x0) are
cycles of Bott-Samelson type (see [Bo-Sa], [Hs-Pa-Te]) for the index m critical points of the
height function ha, thus [S1], . . . , [Sl] is a basis of Hm(X).

The following result concerning the action of W on Hm(X) was proved in [Hs-Pa-Te,
Corollary 6.10] (see also [Ma, Theorem 2.1.1]):

Proposition 3.1. We can choose an orientation of the spheres Sj, 1 ≤ j ≤ l, such that the
linear isomorphism a → Hm(X) determined by

γ∨

j :=
2γj

〈γj, γj〉
7→ [Sj ],

1 ≤ j ≤ l, is W -equivariant.

We need one more result concerning the action of W on H∗(X):

Lemma 3.2. Let x ∈ a be an arbitrary element, C = CK(x) its centralizer in K, and let

p : X = K/K0 → Ad(K)x = K/C

be the natural map induced by the inclusion K0 ⊂ C. Then the map p∗ : H∗(Ad(K)x) →
H∗(X) is injective. Its image is

p∗H∗(Ad(K)x) = H∗(X)Wx

where the right hand side denotes the set of all Wx-invariant elements of H∗(X). Here
Wx denotes the W -stabilizer of x. In particular, the only elements in H∗(X) which are
W -invariant are those of degree 0, i.e.

H∗(X)W = H0(X).
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Proof. The map p : K/K0 → K/C is a fibre bundle. The fiber C/K0 is an s-orbit
of the symmetric space CG(x)/CK(x). The latter has all root multiplicities equal to m, as
they are all root multiplicities of some roots of G/K. By Theorem 1.1 (ii), C/K0 can have
non-vanishing cohomology groups only in dimensions which are multiples of m. The same
can be said about the cohomology of the space K/C. Because m ∈ {2, 4, 8}, the spectral
sequence of the bundle p : K/K0 → K/C collapses, which implies that p∗ is injective.

The map p is W -equivariant with respect to the actions of W on Ad(K)x0, respectively
Ad(K)x defined by (1). Thus if w ∈ Wx, then w|Ad(K)x is the identity map, hence we have
p ◦ w = p. This implies the inclusion

p∗H∗(Ad(K)x) ⊂ H∗(X)Wx .

On the other hand, the action of W on X defined by (1) is free, as the Ad(K) stabilizer
of the general point x0 reduces to K0. Consequently we have

H∗(X)Wx = H∗(X/Wx)

and

χ(X/Wx) =
χ(X)

|Wx|
=

|W |

|Wx|
,

where χ denotes the Euler-Poincaré characteristic. It follows from Theorem 1.1 (c) that

dim H∗(X)Wx =
|W |

|Wx|
= dim H∗(Ad(K)x).

Now we use that p∗ is injective.

In order to prove the last statement of the lemma, we take x = 0 ∈ a. �

Let us consider the Euler class τi = e(Ei) ∈ Hm(X), 1 ≤ i ≤ l. We will prove that:

Lemma 3.3. (i) The cohomology classes τi, 1 ≤ i ≤ l are a basis of Hm(X).

(ii) The linear isomorphism Φ : a∗ → Hm(X) determined by

γi 7→ e(Ei),

1 ≤ i ≤ l, is W -equivariant.

Proof. By Proposition 3.1 we know that

si∗[Sj ] = [Sj ] − dji[Si],

where

dji = 2
〈γ∨

j , γ∨

i 〉

〈γ∨

i , γ∨

i 〉
.

Denote by 〈 , 〉 the evaluation pairing Hm(M)×Hm(M) → R. Consider αj ∈ Hm(M) such
that 〈αj , [Si]〉 = δij, 1 ≤ i, j ≤ l. Take the expansion

τi =

l
∑

j=1

tijαj .
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The automorphism si of X maps the distribution Ei onto itself and changes its orientation
(since so does the antipodal map on an m-dimensional sphere). Thus

s∗i (τi) = −τi.

Consequently we have

tij = 〈τi, [Sj]〉 = 〈−s∗i (τi), [Sj]〉 = −〈τi, si∗[Sj ]〉 = −〈τi, [Sj] − dji[Si]〉 = −tij + 2dji

which implies tij = dji. By Proposition 3.1, the matrix (dij) is the Cartan matrix of the root
system dual to Π, hence it is non-singular. Consequently τi, 1 ≤ i ≤ l is a basis of Hm(X).
Again by Proposition 3.1 we have

〈s∗j(τi), [Sk]〉 = 〈τi, [Sk] − dkj[Sj]〉 = tik − dkjtij = tik − tjkdji,

thus

s∗j(τi) = τi − djiτj .

It remains to notice that dji can also be expressed as

dji = 2
〈γi, γj〉

〈γj, γj〉
.

�

We are now ready to prove Theorem 1.2:

Proof of Theorem 1.2 (i) Consider the ring homomorphism Φ : S(a∗) → H∗(X) induced
by γi 7→ e(Ei), 1 ≤ i ≤ l. By Lemma 3.3, Φ is W -equivariant and from Lemma 3.2 we
deduce that 〈S(a∗)W

+ 〉 ⊂ ker Φ. By Lemma 3.4 (see below), it is sufficient to prove that

Φ(
∏

α∈Π+

α) 6= 0.

To this end, we will describe explicitly Φ(α), for α ∈ Π+. Write α = w.γj, where w ∈ W .
The latter is of the form w = hK0, with h ∈ K ′

0. The image of Sj(x0) by the automorphism
w of X is

w(Sj(x0)) =Ad(Kj)Ad(h−1)x0 = Ad(h−1)Ad(hKjh
−1)x0

=Ad(h−1)Ad(Kα)x0 = Ad(h−1)Sα(x0) = Sα(Ad(h−1)x0)

=Sα(w.x0).

Here Kα is the connected subgroup of K of Lie algebra k0 + kα and Sα(x0) := Ad(Kα)x0 is a
round metric sphere through x0; for any x = Ad(k)x0 ∈ X we have Sα(x) := Ad(k)Sα(x0),
which is an integral manifold of

Eα(x) = Ad(k)[kα, x0].

It is worth mentioning in passing that the spheres Sα and the distributions Eα are the
curvature spheres, respectively curvature distributions of the isoparametric submanifold X ⊂
p (see the remark following Theorem 1.2 in the introduction). Thus the differential of w
satisfies (dw)(Ej) = Eα, which implies

e(Ej) = w∗e(Eα).
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Consequently
Φ(α) = Φ(w.γj) = w−1.Φ(γj) = (w−1)∗(e(Ej)) = e(Eα).

We deduce that
Φ(

∏

α∈Π+

α) =
∏

α∈Π+

e(Eα) = e(
∑

α∈Π+

Eα).

On the other hand,
∑

α∈Π+

Eα(x0) =
∑

α∈Π+

[kα, x0] = [k, x0] = Tx0
X

thus
∑

α∈Π+

Eα = TX.

It follows that
Φ(

∏

α∈Π+

α) = e(TX),

which is different from zero, as

e(TX)([X]) = χ(X) = |W |,

where χ(X) is the Euler-Poincaré characteristic of X.

(ii) We apply Lemma 3.2. �

The following lemma has been used in the proof:

Lemma 3.4. ([Hi, Lemma 2.8]) Let I be a graded ideal of S(a∗) which is also a vector
subspace and such that 〈S(a∗)W

+ 〉 ⊂ I. We have I = 〈S(a∗)W
+ 〉 if and only if

∏

α∈Π+

α /∈ I.

A proof of this lemma can also be found in the appendix.

4. Appendix: Proof of Lemma 3.4

The goal of this appendix is to provide a proof of Lemma 3.4, which is stated without a proof
in [Hi]. As mentioned in the introduction, the Weyl group W can be realized as the group of
orthogonal transformations of a generated by the reflections sα, α ∈ Π+. In fact, if {γ1, . . . , γl} is a
simple root system, then W is generated by si := sγi

, 1 ≤ i ≤ l. Denote by w0 the longest element
of W , where the length is measured with respect to the generating set {s1, . . . , sl}. We will use the
notations

S := S(a∗), IW := 〈S(a∗)W+ 〉.

First of all we note that the action of W on the polynomial ring S is given by

(w.f)(x) = f(w−1.x),

where w ∈ W , f ∈ S, x ∈ a. This action preserves the grading of S, hence the ideal IW generated
by the nonconstant W -invariant polynomials is also graded. The most prominent example of a
polynomial which is not W -invariant is

d =
∏

α∈Π+

α.
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In fact d is skew-invariant, in the sense that w.d = (−1)l(w)d, for any w ∈ W .

If α ∈ Π+, we consider the operator ∆α : S → S defined as follows:

∆α(f) =
f − sα.f

α
,

f ∈ S. Note that f − sα.f vanishes on the space ker α, hence ∆α(f) is really a polynomial. The
following result is straightforward:

Lemma 4.1. If w ∈ W , α ∈ Π+, f, g ∈ S, then we have:

(a) ∆α(fg) = ∆α(f)g + sα(f)∆α(g);

(b) ∆α(IW ) ⊂ IW .

To any w ∈ W we can associate the operator ∆w : S → S, which has degree −l(w), and is
defined as follows: take w = si1 . . . sik a reduced expression and put ∆w = ∆γi1

· · ·∆γik
. We note

that ∆w does not depend on the choice of the reduced expression (see e.g. [Hi, Proposition 2.6]).
The operators obtained in this way have the following property (see [Hi, Lemma 3.1]):

(3) ∆w ◦ ∆w′ =

{

∆ww′, if l(ww′) = l(w) + l(w′)

0, otherwise

A classical result which goes back to Chevalley, says that the ideal IW is generated by l homo-
geneous polynomials, which are algebraically independent. Let d1, · · · , dl denote their degrees. It
follows that the Poincaré polynomial of S/IW is:

P (S/IW ) =

∞
∑

k=0

(dimSk − dim Ik
W )tk =

l
∏

j=1

(1 + t + · · · + tdj−1).

Combined with the fact that d1 + · · · dl = N + l (see for instance [Hu, Theorem 3.9]), this tells us
that Ik = Sk, for k ≥ N + 1. The same polynomial can be expressed as (see [Hu, Theorem 3.15]):

P (S/IW ) =
∑

w∈W

tl(w).

We deduce that dimSk − dim Ik
W equals the number of w ∈ W with l(w) = k, 0 ≤ k ≤ N . The

following result describes a direct complement of Ik
W in Sk:

Proposition 4.2. For any 0 ≤ k ≤ N , the elements ∆w(d), w ∈ W , l(w) = N − k are linearly
independent and span a direct complement of Ik

W in Sk.

Proof. The number of elements of W of length k equals the number of elements of length
N − k, hence we only have to prove that the polynomials ∆w(d), where l(w) = N − k are linearly
independent and their span intersected with IW is {0}. To this end, it is sufficient to show that if

∑

l(w)=N−k

λw∆w(d) ∈ Ik
W

then all λw must vanish. Indeed, if we fix v ∈ W with l(v) = N − k, then by (3), we have

∆w0v−1(
∑

l(w)=N−k

λw∆w(d)) = λv.

The left hand side of this equation is in I0
W , hence it must be 0.
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We are ready to prove Lemma 3.4:

Proof of Lemma 3.4 We prove by induction on k that Ik
W = Ik, 0 ≤ k ≤ N . Things are clear

for k = N : IN
W equals IN because IN

W ⊂ IN 6= SN and the codimension of IN
W in SN is 1 (see

Proposition 4.2). Now, from Ik+1 = Ik+1
W we deduce that Ik = Ik

W . Suppose that we have

f :=
∑

l(w)=N−k

λw∆w(d) ∈ Ik,

where λw ∈ R, not all of them equal to 0. We will prove by induction on m ∈ {0, . . . , k} the
following claim

Claim. For any hm ∈ Sm and any α1, . . . , αm ∈ Π+, we have

hm∆α1
◦ . . . ◦ ∆αm(f) ∈ Ik.

For m = 0, this is trivial. Suppose it is true for a certain m and prove it for m + 1. If hm ∈ Sm,
α1, . . . , αm ∈ Π+, h an arbitrary homogeneous polynomial of degree 1, and α a positive root, then
we have

hhm∆α1
◦ . . . ◦ ∆αm(f) ∈ Ik+1 = Ik+1

W ,

hence its image by ∆α is in Ik
W ⊆ Ik. We deduce that

∆α(h)hm∆α1
◦ . . .◦∆αm(f)+sα(h)∆α(hm)∆α1

◦ . . .◦∆αm(f)+sα(h)sα(hm)∆α ◦∆α1
◦ . . .◦∆αm(f)

is in Ik, consequently sα(hhm)∆α ◦ ∆α1
◦ . . . ◦ ∆αm(f) ∈ Ik. Since any hm+1 ∈ Sm+1 is a linear

combination of polynomials of the form sα(hhm), the claim is proved.

We deduce that for any v ∈ W with l(v) = k, and any hk ∈ Sk we have that

hk∆v(f) ∈ Ik.

Fix now w ∈ W with l(w) = N − k and take v := w0w
−1. Then ∆v(f) = λw by (1), hence

λwhk ∈ Ik, for any hk ∈ Sk. But then λw must vanish, since Ik 6= Sk (if they were equal, from
k ≤ N we would deduce IN = SN , which is false). We conclude that f = 0, which is a contradiction.
This finishes the proof. �
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