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1 The Algebraic Definition of Coherent Configurations and

Association Schemes

Let X be a finite set of size n. If r is a relation on X (i.e. r ⊂ X ×X), then the adjacency matrix
σr is the n × n (0, 1)-matrix whose (i, j) entries are 1 if (i, j) ∈ r and 0 otherwise. If S is a set of
relations on X, then we define the complex adjacency algebra of S to be the subalgebra of Mn(C)
generated by the adjacency matrices of relations in S. Algebraic properties of and relationships
between the relations in S can be detected in the adjacency algebra. We will particularly interested
in cases when the adjacency matrices define a basis for an associative algebra with nonnegative
integer structure constants. Further properties arise when the adjacency matrices commute, or
when the eigenvalues of the adjacency matrices lie in a fixed subring of C. Observe that S is a
partition of X ×X if and only if

∑
r∈S

σr = J , the all 1’s matrix.

Definition 1.1. Let X be a set (not empty and not necessarily finite), and let S be a set of relations
on X. The pair (X,S) is a coherent configuration (CC) if

(a) S is a partition of X ×X;

(b) for all s ∈ S, s∗ = {(y, x) ∈ X ×X : (x, y) ∈ s} ∈ S;

(c) there is a subset ∆ ⊂ S such that
⋃
δ∈∆ δ = 1X (the equality relation on X); and

(d) for all p, q, r ∈ S, there is a cardinality apqr such that for all (x, z) ∈ r, |{x ∈ X : (y, x) ∈
p, (x, z) ∈ q}| has cardinality apqr.

When (X,S) is a CC, we will sometimes say that S is a CC on X. By convention, when S
is a CC on X we insist that ∅ 6∈ S. The relations in the set ∆ in the definition are called the
fibres of S. When the set X is a finite ordered set (usually taken by default to be {1, 2, . . . , n} for
some positive integer n), any CC S on X is a finite set of relations {s1, . . . , sd}, and one can define
adjacency matrices σsi for i = 1, . . . , d. The CC definition is equivalent to the set of adjacency
matrices satisfying the following five properties:
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(a) for each s ∈ S, σs is a (0, 1)-matrix;

(b)
∑
s∈S

σs = J (the all 1’s matrix);

(c) for each s ∈ S, (σs)
T = σs∗ for some s∗ ∈ S;

(d) there is a subset ∆ ⊂ S such that
∑
δ∈∆

σδ = I; and

(e) there is a set of non-negative integers {apqr : p, q, r ∈ S} such that for all s, t ∈ S;

σpσq =
∑
r∈S

apqrσr.

The non-negative integers appearing in the definition are the intersection numbers of the CC.
When X is a finite set of size n then we say that (X,S) has order n. When (X,S) is a CC of
finite order, its intersection numbers are the structure constants for the adjacency algebra CS.
The dimension of the adjacency algebra is precisely the size of S. Since the structure constants
of this adjacency algebra are nonnegative integers, we can define the integral adjacency ring ZS in
the obvious way, and this leads to adjacency algebras over any field and adjacency rings over any
commutative ring with unity in the obvious fashion (i.e. the adjacency ring over the commutative
ring with unity R is just R⊗Z ZS.)

The following properties of CC’s are immediate from the definition.

Proposition 1.2. Let (X,S) be a CC of order n, and let ∆ = {δ1, . . . , δf} be the set of fibres of S.
Then

(a) the fibres provide a natural partition {X1, . . . , Xf} of X for which each δi = {(x, x) : x ∈ Xi};

(b) for all s ∈ S, s ⊆ Xi ×Xj for some 1 ≤ i, j ≤ f ;

(c) the structure constants of the CC have the property that for all p, q, r, s ∈ S,∑
t∈S

aqrtapts =
∑
t∈S

apqtatrs;

(d) the adjacency algebra CS is a self-adjoint subalgebra of Mn(C) that is closed under pointwise
(Schur or Hadamard) multiplication and contains J (i.e. CS is a coherent algebra).

(e) CS is a semisimple algebra.

Proof. (a) Obvious.

(b) Let s ∈ S, and let i, j ∈ {1, . . . , f}. Then δisδj is an nonnegative integer linear combination
of the {σr : r ∈ S}. If δisδj 6= 0, then its only nonzero entries will be 1’s that occur in the
positions (x, y) for which (x, y) ∈ s ∩ (Xi ×Xj). Since there is a unique relation in S with a
nonzero entry in any given position, this forces δisδj = s, and so s ⊆ (Xi ×Xj) for this i and
j.
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(c) Since CS is an associative algebra, we have (σpσq)σr = σp(σqσr), for all p, q, r ∈ S. Interpreting
this in terms of structure constants gives the desired formula.

(d) This follows easily from the definition since the basis consisting of the adjacency matrices is
closed under the transpose.

(e) It is well-known that self-adjoint C-subalgebras of Mn(C) are always semisimple.

There are several specific kinds of CC’s and related algebras that we will deal with in these
notes.

1. Association schemes are homogeneous CC’s, those with ∆ = {I = s0}. Since these are
the central theme of these notes, we will often refer to them simply as ”schemes” for short,
and write S = {s0, s1, . . . , sd} when the scheme has d nonidentity relations (i.e. the scheme is
of rank d).

2. Commutative Association schemes are schemes whose adjacency matrices commute.

3. Symmetric association schemes are schemes for which every σs is a symmetric matrix. Such
schemes are automatically commutative.

4. Thin association schemes are schemes in which every relation has exactly one 1 in every row
and column. Note that the adjacency matrices of thin schemes form a finite group of order n,
and conversely every finite group of order n can be identified with a thin scheme by means of
its left regular representation.

5. Table Algebras are a finite-dimensional algebras A with a distinguished basis B = {b1 =
1, b2, . . . , br} and an involution ∗ for which B∗ = B, and the structure constants {λijk : 0 ≤
i, j, k ≤ r} determined by the basis B are nonnegative real numbers for which λij1 > 0 if and
only if bj = (bi)

∗.

EXERCISES:

Exercise 1.1: Prove that if the adjacency matrices of CC’s are all symmetric, then the adjacency
matrices commute.

Exercise 1.2: Suppose (X,S) is a symmetric association scheme whose adjacency matrices form
a group of order n. Characterize the isomorphism type of the group.

Exercise 1.3: Suppose (X,S) is a non-symmetric commutative association scheme whose adjacency
matrices form a group of order n. What can be said about the group?

Exercise 1.4: Prove that the only (0, 1)-matrices in the adjacency algebra of a CC (X,S) are the
adjacency matrices corresponding to the relations in S.

Exercise 1.5: The adjacency algebras of small coherent configurations can be conveniently pre-
sented in terms of a basic matrix. If {si : i = 0, 1, . . . , d} are the relations of S, then the basic matrix
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for S is
d∑
i=0

iσsi . For each of the following basic matrices, characterize the underlying configuration

as being a CC, an association scheme, a commutative association scheme, a symmetric association
scheme, a thin association scheme (i.e. a group), or a thin commutative association scheme (i.e. an
abelian group).

(a)

0 3 4
5 1 6
7 8 2

 (b)

0 2 2
3 1 4
3 4 1

 (c)

0 1 2
2 0 1
1 2 0

 (d)


0 1 1 2 2
1 0 2 1 2
1 2 0 2 1
2 1 2 0 1
2 2 1 1 0



(e)



0 1 2 3 4 4 5 5
1 0 3 2 4 4 5 5
3 2 0 1 5 5 4 4
2 3 1 0 5 5 4 4
5 5 4 4 0 1 2 3
5 5 4 4 1 0 3 2
4 4 5 5 3 2 0 1
4 4 5 5 2 3 1 0


(f)



0 1 2 2 3 3 4 4 5 5
1 0 4 4 5 5 2 2 3 3
2 5 0 3 2 3 4 5 1 4
2 5 3 0 3 2 5 4 4 1
3 4 2 3 0 2 5 1 5 4
3 4 3 2 2 0 1 5 4 5
5 2 5 4 4 1 0 3 2 3
5 2 4 5 1 4 3 0 3 2
4 3 1 5 4 5 2 3 0 2
4 3 5 1 5 4 3 2 2 0


Exercise 1.6: Calculate the intersection numbers for the CC’s in part (b) and (d) of Exercise 1.5.

Exercise 1.7: Let (X,S) be a scheme, and let s ∈ S. Show that the row and column sums of the
adjacency matrix σs are all equal to the same positive integer ns. (This integer is called the valency
of s.)

Exercise 1.8: Let (X,S) be a scheme, and let ns be the valency of each s ∈ S. Show the following:

(a) for all r, s ∈ S, ar1s = a1rs = δrs;

(b) for all q, r, s ∈ S, aqrs = ar∗q∗s∗ ;

(c) for all s ∈ S, ns∗ = ns;

(d) if 1 ≤ apq∗1, then p = q;

(e) for all q, r, s ∈ S, aqsrnr = ars∗qnq;

(f) for all q, r ∈ S, ∑
s∈S

aqsr =
∑
s∈S

asqr =
∑
s∈S

asq∗r = nq; and

(g) for all q, r ∈ S, ∑
s∈S

aqrsns = nqnr.

4



2 Connections between association schemes, graphs, per-

mutation groups, and group rings.

Association schemes originated as a combinatorial objects in design theory that combines properties
of graphs and permutation groups. The connection with graphs is quite clear. The elements in
every CC of order n can be viewed as an algebraic decomposition of the complete directed graph
~Kn (including loops at each vertex) with the property that for each subgraph in the decomposition,
the subgraph formed by reversing its arrows is also one of subgraphs in the decomposition. Here
when we say that it is an algebraic decomposition we mean that every edge appears exactly once
among the subgraphs in the decompositon, and that the adjacency matrices of the subgraphs in the
decomoposition form a basis for an algebra with nonnegative integer structure constants.

On the other hand, some symmetric association schemes arise naturally from distance-regular
graphs. An (undirected and loopless) graph Γ = (ΓV ,ΓE) consists of a set of vertices ΓV and a set
of edges ΓE ⊆ ΓV × ΓV for which (γ, δ) ∈ ΓE =⇒ (δ, γ) ∈ ΓE and (γ, γ) 6∈ ΓE, for all γ, δ ∈ ΓV . If
γ ∈ ΓV , then Γ1(γ) = {δ ∈ ΓV : (γ, δ) ∈ ΓE} is the set of neighbours of γ. The vertices in Γ1(γ) are
said to be at distance 1 from γ. The graph Γ is regular of valency k if |Γ1(γ)| = k for all γ ∈ ΓV .

Inductively, we say that a vertex δ is at at distance r from a vertex γ if r is the length of the
shortest possible sequence of vertices

γ = δ0, δ1, δ2, ..., δr = δ,

for which (δi−1, δi) ∈ ΓE for all i ∈ {1, . . . , r}. We denote the set of vertices at distance r from γ
by Γr(γ). We also set Γ0(γ) = {γ}. If Γ is a connected graph with finitely many vertices, then it
is easy to see that if we fix γ ∈ Γ, then there exists a positive integer D such that Γ will be the
disjoint union of the Γi(γ), for i ∈ {0, 1, 2, . . . , D}. This number is called the diameter of the graph
Γ.

When Γ is a regular graph of valency k having v vertices, we can define a set of v × v (0, 1)-
matrices A0, A1, . . . , AD by setting (Ai)γδ = 1 if δ ∈ Γi(γ) and (Ai)γδ = 0 otherwise. In this case we
will have A0 = I (the v×v identity matrix), and A1 = A := the adjacency matrix of Γ. The matrix
Ai is the distance-i adjacency matrix of the graph Γ. Since for every pair (γ, δ) ∈ ΓE, δ ∈ Γi(γ) for
precisely one of the i’s, and so we will have that A0 +A1 + · · ·+AD = J , the v× v identity matrix.

Definition 2.1. A connected regular graph Γ of valency k and diameter D is called distance-
regular if for all i = 0, 1, . . . , D, there are fixed nonnegative integers ci and bi such that for every
pair of vertices γ, δ for which δ ∈ Γi(γ),

|Γ1(δ) ∩ Γi−1(γ)| = ci, and

|Γ1(δ) ∩ Γi+1(γ)| = bi.

We will always have c0 = bD = 0, c1 = 1 and b0 = k. Furthermore,

|Γ1(δ) ∩ Γi(γ)| = k − bi − ci := ai

is also constant for every pair of vertices γ, δ for which δ ∈ Γi(γ). The numbers ai, bi, ci are the
intersection parameters of the distance-regular graph Γ.
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Proposition 2.2. Let Γ be a distance-regular graph of valency k, diameter D, having v vertices, and
let a0, . . . , aD, b0, . . . , bD, c0, . . . , cD be the intersection parameters of Γ. Then the distance adjacency
matrices A0, A,A2, . . . , AD are the adjacency matrices of a symmetric association scheme of rank
D + 1 whose intersection parameters are completely determined by

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1,

with the convention that A−1 = AD+1 = 0, and b−1 = cD+1 = 0.

Proof. It is straightforward to use induction and the definition of the intersection parameters of a
distance-regular graph to establish the formula. We can therefore conclude that {A0, A1, . . . , AD}
generates a D+1-dimensional algebra with nonnegative integer structure constants. The conclusion
then follows from the fact that the Ai’s are all symmetric and A0 + A1 + · · ·+ AD = J .

If A is the adjacency matrix of a distance-regular graph, then the left operator for the action
of A on the space spanned by the Ai in the above proposition in the basis given by the Ai’s is the
tri-diagonal matrix

[A] =



0 k 0 0
1 a1 b1 0

0 c2 a2 b2
. . .

. . . . . . . . . . . . 0
cD−1 aD−1 bD−1

0 0 cD aD


.

Symmetric association schemes of rank 3 arise from distance-regular graphs of diamter 2, which
are known as strongly regular graphs. An interesting example of a strongly regular graph of valency
3 is the Petersen graph P . It has vertex set PV = {1, 2, . . . , 10} and edge set

PE = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (1, 6), (6, 8), (8, 10),
(10, 7), (7, 9), (9, 6), (7, 2), (3, 8), (4, 9), (5, 10)}.

For the Petersen graph P , we have k = 3, D = 2, v = 10, and the relevant equations are

AA0 = A,A2 = 3A0 + A2, and AA2 = 2A1 + 2A2.

So the left operator for A is

[A] =

0 3 0
1 0 2
0 1 2


The reader can check that the only other nontrivial structure constants in the association scheme
arise from the equation A2

2 = 6A0 + 4A1 + 3A2. Since A2 = A2 − 3A0 = A2 − 3I, the eigenvalues of
all the adjacency matrices in this association scheme are completely determined by the spectrum of
A. Indeed, this will be the case for all association schemes arising from distance-regular graphs in
this way, because each of the matrices Ai will be a polynomial of degree i evaluated at the matrix
A.

We now turn to connections between association schemes and permutation groups. Recall that
for any permutation τ ∈ Sn, the symmetric group on n symbols, the permutation matrix Pτ denotes
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the image of τ under the permutation representation for the action of Sn on X = {1, 2, . . . , n}. This
means that if e1, . . . , en denotes the standard basis of column vectors for Cn, then τ(i) = j ⇐⇒
Pτ (ei) = ej ⇐⇒ (Pτ )ji = 1, and all other entries of Pτ are 0. So the permutation matrices are
precisely the (0, 1)-matrices with a single 1 in every row and column.

Proposition 2.3. Let (X,S) be an scheme of order n > 1, and let ns be the valency of each s ∈ S.
Then each adjacency matrix σs is the sum of exactly ns permutation matrices.

Proof. Let s ∈ S. Then σs has exactly ns 1’s in every row and column, with all other entries being
0. This implies that σs is of the form nsA, where A is a doubly stochastic matrix, a nonnegative
matrix whose row and column sums are all equal to 1, and A has exactly ns nonzero entries in every
row and column. It suffices to show that for any doubly stochastic matrix A, there is a permutation
matrix P for which Aij = 0 =⇒ Pij = 0. For this, we use an argument for a theorem of Birkhoff
due to Saunders and Schneider that is outlined in Horn and Johnson’s book Matrix Analysis.

Induct on the number of non-zero entries of A. We may assume that there is a row of A with
more than one nonzero entry, for otherwise A is a scalar multiple of a permutation matrix. Choose
a row of A with a maximal number of nonzero entries, and pick one of the nonzero entries Ai0,j1 in
this row. Since A is doubly stochastic, there will be another nonzero entry Ai1,j1 in the j1-th column
with i1 6= i0. Similarly, there will be another nonzero entry Ai1,j2 in the i1-th row with j2 6= j1, and
another nonzero entry Ai2,j2 with i2 6= i1. It may be the case that the only way to choose Ai1,j2 and
Ai2,j2 will result in i2 = i0. It may also be the case that it is not possible to choose the next nonzero
entry Ai2,j3 with j3 6∈ {j1, j2}. If either of these happen, then we set our sequence of nonzero entries
(which we need for the next step in the algorithm) to be (A1,j1 , Ai1,j1 , Ai1,j2 , Ai2,j2). Otherwise,
i2 6∈ {i0, i1}, and we continue adding pairs of nonzero entries Aic−1,jc , Aic,jc to our sequence until
we are forced to choose either ic ∈ {i0, i1, . . . , ic−1} or jc+1 ∈ {j1, . . . , jc}. Note that if the latter
happens, the nonzero entry Aic,jc+1 is not added to our sequence. This means that the process will
always terminate when our sequence has even length and is of the form

(Ai0,j1 , Ai1,j1 , Ai1,j2 , Ai2,j2 , . . . , Aic−1,jc , Aic,jc).

Let µ be the minimum of the Aij’s appearing in this sequence. Let L be the n× n matrix with the
entry +µ in positions (1, j1), (i1, j2), . . . , (ic−1, jc), −µ in the postions (i1, j1), (i2, j2), . . . , (ic, jc),
and 0’s elsewhere. Then the row and column sums of L are all 0. Therefore, A − L is a doubly
stochastic matrix, satisfies Aij = 0 =⇒ (A− L)ij = 0, and has fewer nonzero entries than A. By
induction, there exists a permutation matrix P for which (A − L)ij = 0 =⇒ Pij = 0. The result
follows.

Using this, we observe that the adjacency algebra of any scheme is contained in the image of the
standard permutation representation P : CSn → Mn(C). This representation of CSn is faithful on
Sn, and has two irreducible constituents, the trivial representation and the reflection representation
of degree n − 1. It follows that for any scheme (X,S) of order n, CS is a subalgebra of P(CSn)
that is generated by the images of certain sums of distinct elements of Sn. It also follows that
the integral adjacency ring ZS a subring of a homomorphic image of an integral group ring ZG
generated over Z by the images of certain sums of elements of the finite group G.

One case where such subrings of ZG can be constructed is in the case of a Schur ring.
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Definition 2.4. Let G be a finite group of order n. Let F be a partition of the set G with the
property that for all s = {g1, . . . , gk} ∈ F , s∗ = {g1

−1, . . . , gk
−1} ∈ F . For each s ∈ F , let

σs =
∑

g∈s g, and let ZF be the free abelian subgroup of ZG generated by {σs : s ∈ F}. We say
that ZF is a generic Schur ring if ZF is a subring of ZG that is free over Z with basis F . In
other words, for all q, r ∈ F , there are (automatically nonnegative) integers aqrs, s ∈ F , such that
σqσr =

∑
s∈F

aqrsσs. ZF is a unital Schur ring if it is a Schur ring with the property that {1} ∈ F .

If ZF is the unital Schur ring defined by a partition F of a group of order n, then the left regular
representation of G will map each σs for s ∈ F to a (0, 1)-matrix, and it is easy to verify that the
Schur ring ZF is the adjacency ring for an scheme whose adjacency matrices are the σs’s for s ∈ F .

Actions of groups on finite sets always give rise to unital Schur rings. If G is a group of order
n and a group H acts on G by automorphisms, let F be the partition of G into distinct H-orbits.
Choose representatives g0 = e, g1, . . . , gd for the distinct H-orbits, and let σi =

∑
g∈giH

g. Note that if

any α =
∑
g∈G

αgg ∈ ZG is fixed by all elements of H, then the coefficients of ghi must be equal to the

coefficient of gi, for each i ∈ {0, . . . , d}, so α lies in ZF . Conversely, each σi is fixed by all elements
of H, and so we can conclude that ZF is equal to the fixed-point subalgebra (ZG)H . In particular,
ZF is a Schur ring.

A common occurrence of a Schur ring occurs in the case of a cyclotomic association scheme.
This is an association scheme whose adjacency matrices are circulant matrices, which are linear
combinations of the powers of a fixed permutation matrix Pτ . For example, consider the following
list of basic matrices of schemes of order 6 excluding those of the two groups of order 6. The basic
matrices are as follows:

(Sa)


0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

 , (Sb)


0 1 2 2 2 2
1 0 2 2 2 2
2 2 0 1 2 2
2 2 1 0 2 2
2 2 2 2 0 1
2 2 2 2 1 0

 , (Sc)


0 1 1 2 2 2
1 0 1 2 2 2
1 1 0 2 2 2
2 2 2 0 1 1
2 2 2 1 0 1
2 2 2 1 1 0

 ,

(Sd)


0 1 2 3 3 3
2 0 1 3 3 3
1 2 0 3 3 3
3 3 3 0 1 2
3 3 3 2 1 0
3 3 3 1 2 0

 , (Se)


0 1 2 2 3 3
1 0 3 3 2 2
2 3 0 2 1 3
2 3 2 0 3 1
3 2 1 3 0 2
3 2 3 1 2 0

 , (Sf )


0 1 2 2 3 3
1 0 2 2 3 3
3 3 0 1 2 2
3 3 1 0 2 2
2 2 3 3 0 1
2 2 3 3 1 0

 .

Here Sa is the trivial single-class association scheme of order 6. To view Sa as a Schur ring, we
can take τ = (1, 2, 3, 4, 5, 6) and use the partition {{1}, {τ, τ 2, τ 3, τ 4, τ 5}}. The others can also be
viewed as Schur rings. For Sb we can take τ to be a permutation for which τ 3 = (1, 2)(3, 4)(5, 6), so
taking τ = (1, 3, 5, 2, 4, 6) suffices, and the partition can be taken to be {{1}, {τ 3}, {τ, τ 2, τ 4, τ 5}}..
For Sc, we can take τ = (1, 4, 2, 5, 3, 6), and use the partition {{1}, {τ 2, τ 4}, {τ, τ 3, τ 5}}. For Sd, we
can again take τ = (1, 4, 2, 5, 3, 6) and refine the previous partition to {{1}, {τ 2}, {τ 4}, {τ, τ 3, τ 5}}.
For Se, take τ = (1, 5, 3, 2, 4, 6) and use the partition {{1}, {τ 3}, {τ, τ 5}, {τ 2, τ 4}}. For Sf , take τ =
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(1, 3, 5, 2, 4, 6) and use the partition {{1}, {τ 3}, {τ, τ 4}, {τ 2, τ 5}}. So all of the non-thin association
schemes of order 6 are Schur rings consisting entirely of circulant matrices, and thus these are all
cyclotomic association schemes.

Often a Schur ring can be realized as a subring of ZG for more than one group G. Indeed, Sa,
Sc, and Sd above can also be viewed as Schur subrings of ZS3.

The above example also provides insight into another phenomenon that occurs for CC’s and
association schemes that is known as fusion. After suitable changes of bases, each of the above
Schur rings can be viewed as a subring of the same group ring Z〈τ〉, which is itself the adjacency
algebra of a thin association scheme. When T and S are two association schemes or CC’s of order
n and ZT is a unital subring of ZS, then we say that T is a f usion of S, and S is a f ission of T .
For association schemes of order 6, the lattice of Schur subrings (fusion subrings) of Z〈τ〉 is

Z[Sb] − Z[Sf ]
/ \ \

Z[Sa] Z[Se] − Z〈τ〉.
\ / /

Z[Sc] − Z[Sd]

Another example of a Schur ring is a double coset algebra. Let H be a proper subgroup of a
finite group G having index n. Let X = G/H := {H = x1H, x2H, . . . , xnH} be the set of left cosets
of H in G. Then G acts on the set of pairs of left cosets X ×X via g(xiH, xjH) = (gxiH, gxjH).
The orbits of this action of G on X × X are called the 2-orbits for the action of G on X. Each
2-orbit G(xH, yH) can be represented in the form G(H, gH) for some g ∈ G, so for later use we
let gH := G(H, gH) denote this 2-orbit. It is easy to see that the collection of 2-orbits is in 1-to-
1-correspondence with the collection of double cosets of H in G via the map gH 7→ HgH, for all
g ∈ G. We claim that the collection of 2-orbits for the action of G on X is association scheme on
X ×X. To see this, observe that the 2-orbits do indeed partition X ×X, that the 2-orbit 1H is the
identity relation on X (since left multiplication by G is a transitive action on the set of left cosets
of H in G), and that the transpose of a 2-orbit is a 2-orbit since

(xH, yH) ∈ gH ⇐⇒ Hx−1yH = HgH
⇐⇒ H(x−1y)−1H = Hg−1H
⇐⇒ (yH, xH) ∈ (g−1)H .

It remains to show the intersection numbers of this scheme are well-defined. Given 2-orbits pH , qH ,
and rH , the definition of the corresponding intersection number is

apHqHrH = |{(xH, zH) ∈ rH : ∃yH ∈ X, (xH, yH) ∈ pH and (yH, zH) ∈ qH}|.

If (xH, zH) ∈ rH and there exists a yH satisfying (xH, yH) ∈ pH and (yH, zH) ∈ qH , then
we have that yH ⊆ xHpH, and so zH ⊆ yHqH ⊆ xHpHqH ∩ xHrH. Conversely, for any
zH ⊆ xHpHqH ∩ xHrH, we have that (xH, zH) ∈ rH , and since HpHqH = (HpH)(HqH), there
exists a y ∈ xHpH such that (xH, yH) ∈ pH and (yH, zH) ∈ HqH. So for a given xH, the left cosets
zH for which (xH, zH) belongs to the set in question are those contained in xHpHqH ∩ xHrH.
The number of these left cosets is 1

|H| |xHpHqH∩xHrH| =
1
|H| |HpHqH∩HrH|, so it only depends

on the choice of the double cosets HpH, HqH, and HrH, as required.
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The scheme of 2-orbits for the action of a group G on the set of left cosets of a proper subgroup
H of G is known as a Schurian, or group case association scheme. It will be denoted by (G/H,G//H)
or by 2-orb(G,G/H). Its scheme ring over Q is canonically isomorphic to the double coset algebra
eHQGeH , where eH = 1

|H|
∑
h∈H

h := 1
|H|(H

+) is the idempotent corresponding to the trivial character

of the group H. Note that this double coset algebra is an example of a Schur ring, but it will not
be a unital Schur ring unless |H| = 1. If [G : H] = n, the isomorphism from Q[G//H] → eHQGeH
is given by

σgH 7→ |H|(eHgeH).

Verification of this point is easily reduced to checking that the intersection numbers of the scheme
agree with the structure constants of the double coset algebra in this basis. For a given p, q, r ∈ G,
we have

(eHpeH)(eHqeH) = eHpeHqeH
= 1

|H|3
∑

h1,h2,h3∈H
h1ph2qh3

= 1
|H|3

∑
HrH∈H\G/H

α
HpH,HqH,HrH

eHreH ,

where α
HpH,HqH,HrH

= |HpHqH ∩ HrH| = |H|apH ,qH ,rH . So it follows that scaling each of the
(eHgeH)’s in the natural basis of the double coset algebra by |H| will produce a basis with the same
structure constants as Q[G//H].

The reader should be aware that the basis elements of a Schur ring do not always correspond
to a Schurian scheme. Over rings of characteristic zero, these correspond to fusion subschemes of
Schurian schemes, which are not always Schurian.

The Schurian property is defined more generally for CC’s using the 2-orbit concept. The collec-
tion of 2-orbits for the action of a finite group G on a finite set X is a CC on the set X, denoted
2-orb(G,X). The fibres of 2-orb(G,X) correspond to the orbits of G on X. So 2-orb(G,X) will be
an association scheme if and only if the action of G on X is transitive (i.e. there is only one orbit).
It will be a half-homogeneous CC if and only if the action of G on X is half-transitive (i.e. every
every orbit of G on X has the same size), and a symmetric association scheme if and only if the
action of G on X is generously transitive (i.e. for every (x, y) ∈ X ×X, there exists a g ∈ G such
that g(x, y) = (y, x)).

On the other hand, given a CC S defined on a set X of size n, we can define its combinatorial
automorphism group Aut(S) to be the subgroup the group of all permutations φ of X for which
(x, y) ∈ s =⇒ (φx, φy) ∈ s, for all s ∈ S.

The functors Aut and 2-orb can be composed. It is fairly easy to see that if G acts on X, then G
will be a subgroup of Aut(2-orb(G,X)). We say that G is a 2-closed permutation group on X when
G = Aut(2-orb(G,X)). S is always a fusion CC of 2-orb(Aut(S), X), because if s ∈ S, the 2-orbit
of (x, y) under the action of Aut(S) will be contained in s, but it may be the case that s contains
more than one 2-orbit of Aut(S)). We say that S is a Schurian CC when S = 2-orb(Aut(S), X).

In order for (X,S) to be a Schurian CC, it is necessary and sufficient that every scheme relation
s ∈ S be a single 2-orbit of Aut(S). So whenever s ∈ S and (x, y), (x, z) ∈ s, then there must be
a φ ∈ Aut(S) that fixes x and maps y to z. In other words, (X,S) is a Schurian CC if and only
if for all x ∈ X, the stabilizer of x in Aut(S) always acts transitively on {y ∈ X : (x, y) ∈ s}. A
Schurian scheme is a Schurian CC with the additional property that Aut(S) acts transitively on X.
This characterization of Schurian schemes follows from Theorem 6.3.1 in Zieschang’s book Theory
of Association Schemes.
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Theorem 2.5. Let (X,S) be an association scheme, and let G = Aut(S). Let x ∈ X, and let H
be the stabilizer of x in G. Then the following are equivalent:

(a) (X,S) is a Schurian scheme;

(b) G acts transitively on X and, for all s ∈ S, H acts transitively on {y : (x, y) ∈ s};

(c) there is a bijection ϕ : X → G/H which induces a combinatorial isomorphism between (X,S)
and the group-case association scheme (G/H,G//H).

In practical terms, this characterization makes it possible to always check whether or not a given
scheme is Schurian. Starting with S, one computes the automorphism group of S (which these days
can be done using the nauty software implemented by the grape package available in GAP), then
checks that Aut(S) acts transitively on X, and if it does then one checks that for all x ∈ X, for all
s ∈ S, StabAut(S)(x) acts transitively on {y : (x, y) ∈ s}.

Although many small schemes turn out to be Schurian, once the order is beyond 30 there are
usually more non-Schurian schemes than Schurian ones. The smallest non-Schurian scheme is an
association scheme (X,S) of order 15:

0 1 1 1 1 1 1 1 2 2 2 2 2 2 2
2 0 1 1 1 2 2 2 1 1 1 1 2 2 2
2 2 0 1 1 1 2 2 1 2 2 2 1 1 1
2 2 2 0 1 2 1 1 2 1 1 2 1 1 2
2 2 2 2 0 1 1 1 1 1 2 1 2 2 1
2 1 2 1 2 0 1 2 2 2 1 1 1 2 1
2 1 1 2 2 2 0 1 1 2 1 2 2 1 1
2 1 1 2 2 1 2 0 2 1 2 1 1 1 2
1 2 2 1 2 1 2 1 0 2 1 1 2 1 2
1 2 1 2 2 1 1 2 1 0 1 2 1 2 2
1 2 1 2 1 2 2 1 2 2 0 1 1 2 1
1 2 1 1 2 2 1 2 2 1 2 0 2 1 1
1 1 2 2 1 2 1 2 1 2 2 1 0 1 2
1 1 2 2 1 1 2 2 2 1 1 2 2 0 1
1 1 2 1 2 2 2 1 1 1 2 2 1 2 0


In this case, Aut(S) is a group of S15 order 21 that has three orbits on X = {1, . . . , 15} (of sizes 7,
7, and 1), so the scheme is not Schurian.

There is a unique non-Schurian scheme of order 16 and rank 3 appearing in the exercises that
has a transitive automorphism group, which is a fusion scheme of a Schurian scheme of rank 4.

EXERCISES:

Exercise 2.1: Symmetric association schemes of rank 3 arise from distance-regular graphs of
valency 2, which are known as strongly regular graphs. If Γ is a strongly regular graph on n vertices
with valency k, show that the characteristic polynomial of A is of the form x2− (λ−µ)x− (k−µ),
where λ and µ are the constants given in the equation A2 = kIn + λA+ µA2. (For this reason, an
important invariant of a strongly regular graph is its type (n, k, λ, µ).
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Exercise 2.2: Let G be a cyclic group of order 7. Determine all of the Schur subrings of CG.

Exercise 2.3: Let G = S3. Find all of the Schur subrings of S3.

Exercise 2.4: Let G = S3, and let H = 〈(1, 2)〉. Find the basis matrix presentation for the
Schurian scheme defined by the ordinary Hecke algebra corresponding to H.

Exercise 2.5: Let G = A4, and let H = 〈(1, 2, 3)〉. Calculate the basis matrix for the Schurian
scheme defined by the double cosets of H in G.

Exercise 2.6: Suppose H is a normal subgroup of a group G having index n. Show that the
ordinary Hecke algebra eHCGeH is isomorphic to C[G/H].

Exercise 2.7: One simple construction of symmetric association schemes from schemes is called
stratification. Given an scheme (X,S) of finite order, the stratification of S is a new set of relations
S̃ on X given by S̃ = {s ∪ s∗ : s ∈ S}.

(a) Show that if S is a commutative association scheme on X, then its stratification S̃ will also
be an association scheme on X.

(b) Show that the group S3 defines a non-commutative scheme whose stratification is not an
association scheme.

Exercise 2.8: Let S be a CC. Show that Aut(S) is the precisely the group of all permutations
whose permutation matrices commute with every adjacency matrix in S.

Exercise 2.9: Show that the automorphism group of the scheme of order 16 and rank 3 whose
basic matrix is shown is transitive, but the scheme is still non-Schurian.

0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
1 0 1 1 2 2 2 1 1 1 2 2 2 2 2 2
1 1 0 2 1 2 2 1 2 2 1 1 2 2 2 2
1 1 2 0 2 1 2 2 1 2 2 2 1 1 2 2
1 2 1 2 0 2 1 2 2 2 1 2 1 2 1 2
1 2 2 1 2 0 1 2 2 2 2 1 2 1 2 1
1 2 2 2 1 1 0 2 2 1 2 2 2 2 1 1
2 1 1 2 2 2 2 0 2 1 2 1 2 1 1 2
2 1 2 1 2 2 2 2 0 1 1 2 1 2 2 1
2 1 2 2 2 2 1 1 1 0 2 2 2 2 1 1
2 2 1 2 1 2 2 2 1 2 0 1 1 2 2 1
2 2 1 2 2 1 2 1 2 2 1 0 2 1 2 1
2 2 2 1 1 2 2 2 1 2 1 2 0 1 1 2
2 2 2 1 2 1 2 1 2 2 2 1 1 0 1 2
2 2 2 2 1 2 1 1 2 1 2 2 1 1 0 2
2 2 2 2 2 1 1 2 1 1 1 1 2 2 2 0


(Hint: Use GAP. Show that the automorphism group is transitive with order 192, and the

stabilizer of 1 in G has 4 double cosets, not 3, and hence the scheme is not Schurian.)
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3 Characters of schemes

Since the adjacency algebras of coherent configurations are self-adjoint subalgebras of Mn(C), it
follows that they are semisimple. Therefore, there is a Wedderburn decomposition

CS =
⊕

χ∈Irr(S)

CSeχ

where the simple components CSeχ are the principal ideals generated by a primitive idempotent
of the center of CS. The number of simple components corresponds to the number of inequivalent
irreducible matrix representations of CS, which are distinguished by their irreducible characters
χ. Each simple component CSeχ is a simple C-algebra, and hence of the form Mnχ(C), where
nχ = χ(I) is the degree of the irreducible character χ of S. Since CS has dimension equal to the
rank r of the CC, we automatically have

r =
∑

χ∈Irr(S)

n2
χ.

The left regular representation of the elements of the CC as left operators on the r-dimensional
space CS affords the regular character ρ of S, whose irreducible decomposition is

ρ =
∑

χ∈Irr(S)

nχχ.

The most natural matrix representation of an CC is its standard representation, which is the
n-dimensional representation of the elements of the scheme in terms of their adjacency matrices.
(The standard representation and the regular representation correspond only when S is a group.)
This affords the standard character of S, which we denote by γ. From the basic matrix for S, we
see that for all s ∈ S,

γ(σs) =

{
|s|, if s is a fibre of S,
0, otherwise.

Here |s| denotes the number of elements of s; i.e. the number of 1’s occurring in σs.
For each irreducible character χ, if mχ denotes the multiplicity of χ in γ, then we have γ =∑
mχχ, so

n =
∑

χ∈Irr(S)

mχnχ.

It is straightforward to obtain a formula for the eχ’s in terms of the irreducible character values
{χ(σs) : χ ∈ Irr(S), s ∈ S} and the multiplicities mχ. We have that for each s ∈ S, γ(σs∗eχ) =
mχχ(σs∗). On the other hand, if eχ =

∑
t∈S ctσt where the ct coefficients all lie in C, then γ(σs∗eχ) =∑

t ctγ(σs∗σt) = cs|s|. Therefore,

eχ = mχ

∑
s∈S

χ(σs∗)

|s|
σs.

When S is an scheme, then |s| = nsn, so the formula becomes

eχ =
mχ

n

∑
s∈S

χ(σs∗)

ns
σs.
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The |Irr(S)| × |S| matrix (χ(σs))χ,s is known as the character table of S. As with character
tables of groups, it contains quite a lot of algebraic and representation-theoretic information about
the structure of the CC.

There is a basic algorithm for computing the character table of an scheme which is analogous
to well-known algorithms for group character tables, which we will now outline. The theoretical
details of this algorithm will be dealt with later.

Step 1. Find a suitable basis of Z(CS). In the case of an association scheme of rank d + 1,
one can simply use the set of adjacency matrices {σs : s ∈ S} themselves. For non-commutative
schemes, one can use a maximal linearly independent subset of collection of “modified class sums”

σ̂s =
∑
t∈S

1

nt
σt∗σsσt.

as a basis for Z(CS). These modified class sums all have nonnegative integer coefficients in terms
of the σs’s.

Step 2. Let B = {σ̂b} be the basis of Z(CS) obtained in Step 1, with h = dim(Z(CS)) =
|Irr(S)| = |B|. For each element of B, calculate its matrix Mh(N) as a left operator on Z(CS) in
terms of the basis B.

Step 3. Find a set of h eigenvectors common to all of the matrices σ̂b for b ∈ B. These must
exist, because there are coefficients p̂χ,b (eigenvalues) and q̂b,χ (dual eigenvalues) for which

σ̂b =
∑
χ

p̂b,χeχ and eχ =
∑
b

q̂χ,bσ̂b,

for all b ∈ B and χ ∈ Irr(S). This implies that

σ̂beψ = p̂b,ψeψ,

and so the eψ’s will be eigenvectors common to all of the σ̂b’s. Furthermore, the entries of eψ will
be the coefficients q̂ψ,b for b ∈ B up to multiplication by a scalar, which is uniquely determined by
normalizing in order to arrange that eχ is an idempotent when it is represented in CS. We can also
find mχ at this point, since the image of eχ in its standard representation as an n × n matrix will
be similar to a diagonal (0, 1)-matrix with precisely mχnχ 1’s on its diagonal.

Step 4. Determine the character table of the scheme from the eχ’s and the mχ’s. Solving for
the eigenvalues in Step 3 produces the dual eigenvalues q̂χ,b. We have computed the nonnegative
integers cb,s for b ∈ B, s ∈ S for which σ̂b =

∑
s

cb,sσs in Step 2, so we have

eχ =
∑
b

q̂χ,b
∑
s

cb,sσs =
∑
s

(
∑
b

q̂χ,bcb,s)σs.

Now we can simply compare this to the formula

eχ =
mχ

n

∑
s∈S

χ(σs∗)

ns
σs

to determine the values of the χ(σs)’s.
We will illustrate this algorithm with two examples:
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Example 3.1. Let CS be the algebra with basis S = {1, σp, σq} with multiplication given by

σ2
p = (57)1 + σq,

σpσq = σqσp = (56)σp + (56)σq, and
σ2
q = (3192)1 + (3136)σp + (3135)σq.

Then CS is commutative. The 3× 3 matrices corresponding to σp and σq are:

σp =

0 57 0
1 0 56
0 1 56

 and σq =

0 0 3192
0 56 3136
1 56 3135

 .
The common eigenvectors for [σp] and [σq] are:

e1 = [1, 1, 1]T , e2 = [1,
7

57
,
−1

399
]T , and e3 = [1,

−8

57
,

1

456
]T ,

which satisfy
σpe1 = 57e1, σpe2 = 7e2, σpe3 = −8e3,
σqe1 = 3192e1, σqe2 = −8e2, σqe3 = 7e3.

Since (1+σp+σq)
2 = 3250(1+σp+σq), we have that eχ1 = 1

3250
(1+σp+σq). Since ((399)1+49σp−

σq)
2 = 750((399)1 + 49σp − σq), eχ2 = 1

750
((399)1 + 49σp − σq). Finally, ((456)1 − 64σp + σq)

2 =
975((456)1 − 64σp + σq), we have eχ3 = 1

975
((456)1 − 64σp + σq). Since CS is commutative, we

know that each of the nχ’s has to be 1, so since 399
750

= 1729
3250

and 456
975

= 1520
3250

, we can conclude that
mχ2 = 1729 and mχ3 = 1520. Comparing with the other formula for the eχ’s allows us to complete

the character table for CS. For example, (1729
3250

)(χ2(σp)

np
) = 49

750
and np = 57 implies that χ2(σp) = 7,

and we leave the others to the reader.

1 σp σq mχ

χ1 1 57 3192 1
χ2 1 7 −8 1729
χ3 1 −8 7 1520

It is no accident that the character values are closely related to the eigenvalues for association
schemes. Indeed, if X is the representation affording the character χ, then applying this to the
equation σ̂s =

∑
s

p̂s,ψeψ gives X (σ̂s) = p̂s,χInχ , and taking traces we get χ(σ̂s) = p̂s,χnχ. When CS

is commutative, every nχ will be 1 and we can choose σ̂s = σs for each s ∈ S.

Remark 3.2. Though the parameters used in the above example may seem unnecessarily large
for an introductory example, they become a bit more interesting when one takes in to account the
fact that the existence of a 2-class association scheme of order 3250 with these structure constants
would correspond to an extreme case of a strongly regular graph with valency k and diameter d for
which the vertex/valency bound

n ≤ 1 + k + k(
d−1∑
i=1

(k − 1)i)
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holds with equality. Such graphs are called Moore graphs. If k ≥ 3, then eigenvalue considerations
imply that the diameter must be 2 and k ∈ {3, 7, 57}. The case k = 3 corresponds to the Petersen
graph, and the case k = 7 to the Hoffman-Singleton graph. But a Moore graph with valency 57 is
not yet known to exist! (All that is known about it is that if it does not exist, it corresponds to a
nonschurian 2-class association scheme.) So what we have really computed is the character table of
a table algebra which may or may not be realizable as an association scheme.

Example 3.3. Let S be the scheme of order 12 with basic matrix

d∑
i=0

iσi =



0 1 2 3 4 4 5 5 6 6 7 7
1 0 3 2 4 4 5 5 6 6 7 7
2 3 0 1 6 6 7 7 4 4 5 5
3 2 1 0 6 6 7 7 4 4 5 5
4 4 7 7 0 1 6 6 5 5 2 3
4 4 7 7 1 0 6 6 5 5 3 2
5 5 6 6 7 7 0 1 2 3 4 4
5 5 6 6 7 7 1 0 3 2 4 4
7 7 4 4 5 5 2 3 0 1 6 6
7 7 4 4 5 5 3 2 1 0 6 6
6 6 5 5 2 3 4 4 7 7 0 1
6 6 5 5 3 2 4 4 7 7 1 0



.

Since σ3σ4 = σ7 and σ4σ3 = σ8, S is not commutative. The modified class sums are:

σ̂0 = 8σ0 + 4σ1 σ̂4 = σ̂2 + σ̂3

σ̂1 = 4σ0 + 8σ1 σ̂5 = σ̂2 + σ̂3

σ̂2 = 4σ2 + 2σ4 + 2σ5 σ̂6 = 6σ6 + 6σ7

σ̂3 = 4σ3 + 2σ4 + 2σ5 σ̂7 = σ̂6 ,

so B = {σ̂0 , σ̂1 , σ̂2 , σ̂3 , σ̂6} is a basis for Z(CS). The matrices for the elements of B as left operators
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on Z(CS) in terms of the basis B are:

σ̂0 =


8 4 0 0 0
4 8 0 0 0
0 0 8 4 0
0 0 4 8 0
0 0 0 0 12

 σ̂2 =


0 0 4 0 0
0 0 0 4 0
8 4 0 0 12
4 8 0 0 12
0 0 4 4 0



σ̂1 =


4 8 0 0 0
8 4 0 0 0
0 0 4 8 0
0 0 8 4 0
0 0 0 0 12

 σ̂3 =


0 0 4 0 0
0 0 0 4 0
4 8 0 0 12
8 4 0 0 12
0 0 4 4 0



σ̂6 =


0 0 0 0 12
0 0 0 0 12
0 0 12 12 0
0 0 12 12 0
12 12 0 0 12

 .
The five common eigenvectors to each of these matrices turn out to be: e1 = (1, 1, 3, 3, 2)T , e2 =
(1,−1, 1,−1, 0)T , e3 = (1, 1, 0, 0,−1)T , e4 = (1,−1,−1, 1, 0)T , and e5 = (1, 1,−3,−3, 2)T , and so
the five primitive idempotents of Z(CS) are:

eχ1 = 1
144

(σ̂0 + σ̂1 + 3σ̂2 + 3σ̂3 + 2σ̂6)
= 1

12
(σ0 + σ1 + σ2 + σ3 + σ4 + σ5 + σ6 + σ7)

eχ2 = 1
16

(σ̂0 − σ̂1 + σ̂2 − σ̂3)
= 3

12
(σ0 − σ1 + σ2 − σ3)

eχ3 = 1
36

(σ̂0 + σ̂1 − σ̂6)
= 2

12
(2σ0 + 2σ1 − σ6 − σ7)

eχ4 = 1
16

(σ̂0 − σ̂1 − σ̂2 + σ̂3)
= 3

12
(σ0 − σ1 − σ2 + σ3)

eχ5 = 1
144

(σ̂0 + σ̂1 − 3σ̂2 − 3σ̂3 + 2σ̂6)
= 1

12
(σ0 + σ1 − σ2 − σ3 − σ4 − σ5 + σ6 + σ7).

Therefore, the character table of S is:

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 mχ

χ1 1 1 1 1 2 2 2 2 1
χ5 1 1 −1 −1 −2 −2 2 2 1
χ2 1 −1 1 −1 0 0 0 0 3
χ4 1 −1 −1 1 0 0 0 0 3
χ3 2 2 0 0 0 0 −2 −2 2
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What makes this an interesting example is that the number of character values is less than the
number of collections of scheme relations that can take different character values. So the rule for
groups that the number of character values equals the number of conjugacy classes does not hold for
schemes. Another rule for groups that fails for schemes is that the irreducible character degrees of
a scheme do not have to divide the order of the scheme. An example will be given in the exercises.

Remark 3.4. Much more is known about the eigenvalues and the dual eigenvalues in the case of
commutative association schemes. If we let P̂ = (p̂b,χ)b,χ and Q̂ = (q̂χ,b)χ,b, then

σb =
∑
χ

p̂b,χeχ

=
∑
χ

p̂b,χ(
∑
c

q̂χ,cσ̂c)

=
∑
c

(
∑
χ

p̂b,χq̂χ,c)σ̂c,

so it follows that P̂ Q̂ = I.
If S is a commutative scheme and we take B = S, then

eχ ◦ σb = q̂χ,bσb

for all b ∈ B, so the σb’s are eigenvectors common to the eχ’s under the pointwise product whose
corresponding eigenvalues are the q̂χ,b’s and whose entries are the p̂b,χ’s. Hence the name “dual
eigenvalues”!

(Dual eigenvalues of commutative schemes are usually defined to be the complex numbers qχ,s
for which eχ = 1

n

∑
s∈S

qχ,sσs. So our q̂χ,s = 1
n
qχ,s.)

Remark 3.5. The central primitive idempotents of a CC will always be represented as positive
semidefinite Hermitian matrices in their standard representation. To see this, first note that since
CS is closed under the conjugate transpose ∗, A∗ will lie in Z(CS) whenever A ∈ Z(CS). Therefore,
there are constants cψ ∈ C such that (eχ)∗ =

∑
ψ

cψeψ, and in particular (eχ)∗eχ = cχeχ. Since (eχ)∗

must be one of the primitive idempotents of Z(CS), it suffices to show that cχ 6= 0. Taking the
trace of both sides of the previous equation results in

cχ = tr(m2
χ

∑
s,t

χ(σs∗)

|s∗|
χ(σt∗)

|t|
σs∗σt) = m2

χ

∑
s

|χ(σs∗)|2

|s|2
.

The latter is greater than 0 because the value of an irreducible character of S on the identity matrix
will always be positive.

Remark 3.6. The dual eigenvalues and eigenvalues of a CC are intimately connected by means of
the natural Hermitian form on CS that is given by

[A,B] =
1

n
tr(AB) =

1

n
sum(A ◦BT

),

for all A,B ∈ CS, where sum(A) is simply the sum of all of the entries of the n×n matrix A. This
form has the properties:
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(a) for all A, B, and C ∈ CS, [AC,B] = [A,BC∗] where ∗ denotes the conjugate transpose, and

(b) for all s, t ∈ S, [σs, σt] =

{
ns, if s = t,
0, otherwise.

When S is a commutative scheme, we have that for all s ∈ S and χ ∈ Irr(S),

tr(σseχ) = tr((
∑
ψ

p̂s,ψeψ)eχ) = p̂s,χtr(eχ) = p̂s,χmχ,

while at the same time

tr(σseχ) = sum(σs ◦ eTχ) = sum(σs ◦ (
∑
t

q̂χ,tσt)) = q̂χ,ssum(σs) = q̂χ,snsn.

The latter can written in matrix form. Let M and Λ be the diagonal matricies M = diag(mχ)χ
and Λ = diag(ns). Then the latter identity can be written as nQ̂Λ = MP ∗. Combining this with
the identity P̂ Q̂ = I results in the orthogonality relation

P̂MP̂ ∗ = nΛ.

Remark 3.7. The structure constants of a commutative association scheme are determined by its
eigenvalues. Let S be a commutative scheme, and let r, s, t ∈ S. Since σr ◦ (σsσt) = astrσr, we have
that

tr(σr(σt∗σs∗)) = sum(σr ◦ (σt∗σs∗)
T ) = sum(σr ◦ (σsσt)) = astrnrn,

and at the same time

tr(σr(σt∗σs∗)) = tr(
∑
χ

p̂r,χp̂t,χp̂s,χeχ) =
∑
χ

p̂r,χp̂s,χp̂t,χmχ.

Remark 3.8. The most difficult part of the algorithm for computing character tables for CC’s
is the calculation of a common set of eigenvectors for the σ̂b’s. The algorithms used by modern
computer algebra systems are reasonably efficient as long as the character values of the CC lie in a
cyclotomic extension of Q. For schemes, however, it is unknown whether or not the character values
will always lie in a cyclotomic extension of the rationals. For association schemes, this is a conjecture
due to Norton that appears as Question (2), Section II.7 in the book Algebraic Combinatorics I:
Association Schemes by Bannai and Ito.

Remark 3.9. If R is an integral domain, the scheme ring RS will be semisimple as long as char(R)
does not divide the order of S nor any of the valencies ns for s ∈ S. To see this fact, let α ∈ J(RS),
the Jacobson radical of RS, and write α =

∑
s αsσs. Let {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vm = RX be a

composition series for the standard RS-module RX. Since α ∈ J(RS), we have Viσs∗α ⊆ Vi−1 for
i = 1, . . . ,m, and so the matrix representing σs∗α in the standard representation will be similar to
a strictly upper triangular matrix for every s ∈ S. Taking the traces of these matrices gives us the
equations αsnns = 0, s ∈ S. So if the characteristic of R does not divide the order of S, then the
only elements s ∈ S for which αs can be nonzero are those for which the characteristic of R divides
ns.
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EXERCISES.

Exercise 3.1. Use Remark 3.4 and 3,6 to find a formula for the structure constants of a commu-
tative association scheme in terms of the dual eigenvalues of the scheme.

Exercise 3.2. The Krein parameters of a commutative association scheme S are the constants
{κψφχ : ψ, φ, χ ∈ Irr(S)} defined by

eψ ◦ eφ =
1

n

∑
χ

κψφχeχ.

(As we will show later, these are nonnegative real numbers. However, they are not defined in general
for non-commutative schemes, as eχ ◦ eψ need not lie in Z(CS).)

Find a formula for the Krein parameters of a commutative scheme S in terms of the dual
eigenvalues of S.

(Hint: Follow the dual procedure to that of Remark 3.7, starting with (eψ ◦ eφ)eχ.)

Exercise 3.3. Find a formula for the Krein parameters of S in terms of the eigenvalues of S. Use
this to conclude that the Krein parameters are algebraic over Q.

Exercise 3.4. Let χ, ψ ∈ Irr(S).

(a) Show that eχ ⊗ eψ is a positive semidefinite Hermitian matrix.

(b) Show that eχ ◦ eψ is a principal submatrix of the n2 × n2 matrix eχ ⊗ eψ.

(c) Show that the Krein parameters of a commutative association scheme are nonnegative real
numbers.

Exercise 3.5. Let S = {σ0 = I, σ1, . . . , σ4} be the symmetric association scheme of order 28 whose
multiplication is given by

σ2
1 = 3σ0 + σ2, σ2σ3 = 2σ2 + 2σ4

σ1σ2 = 2σ1 + σ4, σ2σ4 = 4σ1 + 2σ2 + 4σ3 + 2σ + 4
σ1σ3 = σ3 + σ4, σ2

3 = 6σ0 + 2σ1 + 2σ3 + σ4

σ1σ4 = 2σ2 + 2σ3 + σ4, σ3σ4 = 4σ1 + 4σ2 + 2σ3 + 2σ4

σ2
2 = 6σ0 + σ2 + 4σ3 + 2σ4, σ2

4 = 12σ0 + 4σ1 + 4σ2 + 4σ3 + 6σ4.

(a) Calculate the character table of S.

(b) Show that some of the Krein parameters of S are irrational. (Some also have denominator 9,
hence these are not algebraic integers over Z.)

Exercise 3.6. Let S be a commutative association scheme of order n having d classes. The Frame
number of S is

FS = nd−1

∏
s∈S

ns∏
χ∈Irr(S)

mχ

.
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(a) Show that if P̂ is the matrix of eigenvalues of S, then det P̂
n

is an algebraic integer.

(Hint: Since every eigenvalue of S is an algebraic integer, det P̂ is an algebraic integer. Since
one of the eχ’s is 1

n
J , we have

eχ =
1

n

∑
s∈S

σs =
1

n

∑
ψ

(
∑
s

p̂s,ψ)eψ,

so
∑
s∈S

p̂s,ψ = n for ψ = χ and is 0 otherwise. Use this to perform a column operation on P̂

and express det P̂
n

as a determinant of a submatrix of P .)

(b) Show that the Frame number of a commutative association scheme is a rational integer.

(Hint: Take the determinant of both sides of the orthogonality relation and apply the previous
exercise.)

Exercise 3.7. Calculate the character table of the scheme of order 15 whose basic matrix is shown.
What do you notice about the degrees of its irreducible characters?

d∑
i=0

iσi =



0 1 2 3 3 3 3 4 4 4 4 5 5 5 5
2 0 1 4 4 4 4 5 5 5 5 3 3 3 3
1 2 0 5 5 5 5 3 3 3 3 4 4 4 4
3 4 5 0 3 4 5 1 3 4 5 2 3 4 5
3 4 5 3 0 5 4 4 5 1 3 5 4 3 2
3 4 5 4 5 0 3 5 4 3 1 3 2 5 4
3 4 5 5 4 3 0 3 1 5 4 4 5 2 3
4 5 3 2 4 5 3 0 4 5 3 1 4 5 3
4 5 3 3 5 4 2 4 0 3 5 5 3 1 4
4 5 3 4 2 3 5 5 3 0 4 3 5 4 1
4 5 3 5 3 2 4 3 5 4 0 4 1 3 5
5 3 4 1 5 3 4 2 5 3 4 0 5 3 4
5 3 4 3 4 1 5 4 3 5 2 5 0 4 3
5 3 4 4 3 5 1 5 2 4 3 3 4 0 5
5 3 4 5 1 4 3 3 4 2 5 4 3 5 0



.

Exercise 3.8. In this exercise, we outline a proof for the fact that Z(CS) is equal to spanC({σ̂s :
s ∈ S}) for any scheme S.

(a) Let M be a CS-module. Let ζM : EndC(M)→ EndC(M) be the vector space homomorphism
defined by

ζM(α) =
∑
s∈S

1

|s|
σs∗ασs,

for all α ∈ EndC(M). (Here the multiplication is composition and we think of σs as a linear
operator on CS.) Show that for all α ∈ EndC(M), ζM(α) ∈ EndCS(M); i.e. for all σt ∈ S,
for all m ∈M ,

ζM(α)(σtm) = σt(ζM(α)(m)).
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(b) Use the fact that EndCS(CS) ∼= Z(CS) and the map ζCS to show that σ̂b lies in Z(CS) for
every b ∈ S.

(c) Let S = {s0, s1, . . . , sd−1}, and let φ ∈ EndC(CS) be given by φ(σsi) = δ0,iσs0 . Show that
ζCS(φ) = σs0 .

(d) Let Mχ be an irreducible CS-module affording χ ∈ Irr(S). Viewing Mχ as a submodule of
CS, there is a module homomorphism µ : CS → Mχ whose kernel is a complement to Mχ in
CS. Show that for all m ∈Mχ, ζMχ(µφµ)(m) = m.

(e) Identify CSeχ with EndC(Mχ). By the previous part there is an α ∈ CSeχ for which
ζMχ(α)(m) = m, for all m ∈M . Use this to conclude that ζMχ(α) = eχ.

(f) Show that Z(CS) is contained in the span of the σ̂b’s.
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4 Subschemes and Quotient Schemes

In this section we will start to lay the basis for a theory of schemes that parallels the theory of groups
as closely as possible. We will begin develop a theory for schemes that includes analogs of subgroups,
quotient groups, group homomorphisms, and important results concerning these concepts in group
theory.

If (X,S) is a CC, the complex product on S is defined to be st = {u ∈ S : astu > 0}, for all
s, t ∈ S. In other words, st is the support of σsσt; i.e. those u ∈ S for which σu appears with
nonzero coefficient in the product σsσt =

∑
u∈S

astuσu. We can also think of the elements of st as

being those u ∈ S containing points in the composition of the relations s and t:

u ∈ st ⇐⇒ there exists an (x, y) ∈ s and (y, z) ∈ t such that (x, z) ∈ u.

If P and Q are subsets of S, then their complex product is

PQ =
⋃
p∈P

⋃
q∈Q

pq,

and
P ∗ = {p∗ : p ∈ P}.

For any subset R of S, we can define its order by summing the valency map on R; i.e. nR =
∑
r∈R

nr.

Note that nS =
∑
s∈S

ns = n, the order of the CC.

Definition 4.1. Let (X,S) be an scheme. A nonempty subset T of S is a closed subset of S if
T ∗T ⊆ T .

Every scheme (X,S) automatically contains the trivial closed subset {1X} and the closed subset
S itself. Several properties of closed subsets of schemes are immediate.

Proposition 4.2. Let T be a closed subset of an scheme (X,S). Then

(a) 1X ∈ T ;

(b) t ∈ T =⇒ t∗ ∈ T ;

(c) TT ⊆ T ; and

(d) for all p, q ∈ T , σpσq =
∑
t∈T

apqtσt.

In particular, CT is a subalgebra of CS under both ordinary and pointwise multiplication.

Proof. (i) If t ∈ T , then [σt∗σt, I] = nt implies that 1X ∈ T ∗T ⊆ T .
(ii) Since 1X ∈ T , {t∗} = t∗1X ⊆ T ∗T ⊆ T .
(iii) It follows from (ii) that T = T ∗, so TT ⊆ T by definition.
(iv) We have σpσq =

∑
s∈S

apqsσs for all p, q ∈ S. If T is a closed subset of S and p, q ∈ T , then

pq ⊆ T , so the only s’s in S for which the apqs’s may be nonzero in this sum have to lie in T .
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When T is a closed subset of an scheme S, it follows from the above proposition that CT is
a table subalgebra of CS. The next proposition shows that this table algebra is realized as the
adjacency algebra of an scheme, so closed subsets of schemes really are sub-schemes.

We will abuse the notation and say that a point (x, y) ∈ X ×X belongs to a subset R of S if
there is a relation r ∈ R for which (x, y) ∈ R, and conveniently write this as (x, y) ∈ R.

Proposition 4.3. Let T be a closed subset of an scheme (X,S). Fix an x ∈ X, and define

Y := {y ∈ X : (x, y) ∈ T},

and for each s ∈ S, set
sY = s ∩ Y × Y.

(Note that sY will be empty unless s ∈ T .)
Let TY = {tY : t ∈ T}. Then (Y, TY ) is an scheme of order nT =

∑
t∈T

nt.

Proof. First, we claim that TY is a partition of Y × Y . Suppose (y, z) ∈ Y × Y . Then we have
that (x, y) ∈ T and (x, z) ∈ T , so (y, z) ∈ T ∗T ⊆ T . Therefore, there is a unique t ∈ T for which
(y, z) ∈ t, and thus a unique tY ∈ TY such that (y, z) ∈ TY . Hence TY is a partition of Y × Y .

It is easy to see that 1Y ∈ TY , and that (tY )∗ = (t∗)Y , for all t ∈ T .
We have already shown above that the structure constants for CT are well-defined, and these

will automatically be the intersection numbers (Y, TY ), so we have shown that this is an scheme.
The order of (Y, TY ) is |Y | = |{y ∈ X : (x, y) ∈ T}| =

∑
t∈T

nt.

When T is a closed subset of an scheme S, we can talk about the left cosets of T in S as being
the complex products sT := {s}T =

⋃
t∈T st, and, in a similar fashion, the right cosets Ts and the

double cosets TsT .

Proposition 4.4. The collection of left cosets (right cosets, or double cosets, respectively) of T in
S is a partition of S.

Proof. Let p, q ∈ S for which p ∈ qT . Then pT ⊆ qT , so it suffices to show that q ∈ pT . Since
p ∈ qT , there exists a t ∈ T for which aqtp ≥ 1. Therefore, [σqσt, σp] = aqtpnp > 0. But then
[σq, σpσt∗ ] > 0, so we also have apt∗q > 0, and so q ∈ pT . This shows that the set of left cosets is
a partition of S. Similarly, the right cosets will be a partition of S, and the double cosets will be
unions of left cosets of S, and thus be a coarser partition than that of the left cosets.

Example 4.5. The thin radical of an scheme S is Oϑ(S) = {s ∈ S : ns = 1}. Since the thin
radical consists of those elements of S whose adjacency matrices are permutation matrices, and the
product of two permutation matrices is another permutation matrix, it is automatic that the thin
radical of S is a closed subset of S. In fact, Oϑ(S) is a group under ordinary multiplication.

Example 4.6. If P and Q are closed subsets of an scheme S, then it is easy to see that P ∩Q will
be a closed subset of S. Other group-theoretic analogs such as center, centralizer, and normalizer
can be defined, but these may not produce closed subsets.
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Example 4.7. Let T be a closed subset of A scheme S. The strong normalizer of T is

KS(T ) = {s ∈ S : s∗Ts ⊆ T}.

The strong normalizer of a closed subset T of A scheme S of finite order is a closed subset of S,
since p, q ∈ KS(T ) implies that (pq)∗Tpq = q∗p∗Tpq ⊆ q∗Tq ⊆ T . If KS(T ) = S, then T is said to
be a strongly normal closed subset of S.

When T is strongly normal in S, it follows that for all s ∈ S, Ts = sT and nsT = nT . To see
this, suppose that (x, y) ∈ Ts. Then there exists a z ∈ X for which (x, z) ∈ T and (z, y) ∈ s. Let
w ∈ X be such that (x,w) ∈ s. Then

(w, x) ∈ s∗ =⇒ (w, z) ∈ s∗T =⇒ (w, y) ∈ s∗Ts ⊆ T,

and so (x, y) ∈ sT , and we can conclude that Ts = sT .
Furthermore, for any fixed x ∈ X there are exactly nT choices y1, . . . , ynT ∈ X for which

(x, yi) ∈ T . For the same x, there will be ns choices of zj ∈ X with (x, zj) ∈ s∗. For each of these
zj’s, there will be nTs choices of wji ∈ X so that (zj, wji) ∈ Ts. When s ∈ KS(T ), each of the pairs
(x,wji) must lie among the (x, yi)’s because T = s∗Ts. Therefore, there are at most nT choices for
the wji’s, so nTs ≤ nT . On the other hand, each (v, x) ∈ s produces a (v, yi) ∈ sT = Ts, and there
are nT of these, so we must have nT ≤ nTs.

Example 4.8. When S is A scheme and χ is a character of CS, then the kernel of χ is

kerχ = {s ∈ S : χ(σs) = nsnχ}.

The kernel consists of the elements of S whose adjacency matrices are mapped to ns times the
identity matrix by an irreducible representation affording χ. For instance, every element of S lies
in the kernel of the characer afforded by the valency representation. The kernel of a character is
always a closed subset of S. To see this, let X be a representation affording the character χ, and
suppose p, q ∈ kerχ. Then

χ(σpσq) = tr(X (σp)X (σq)) = tr(npnqI) = npnqnχ =
∑
s∈S

apqsnsnχ,

and
χ(σpσq) = χ(

∑
s∈S

apqsσs) =
∑
s∈S

apqsχ(σs).

Since the apqs’s are all nonnegative, we are done if we can show that χ(σs) ≤ nsnχ for all s ∈ S,
for then it will follow that χ(σs) = nsnχ for every s ∈ pq, and so kerχ will be a closed subset of
S. Note that σs is a nonnegative irreducible matrix, so by the Perron-Frobenius theorem it has
a unique eigenvalue of largest modulus whose corresponding eigenvector is the unique one whose
entries are all nonnegative. For σs, this eigenvalue is precisely ns and the eigenvector is the all 1’s
vector. Since χ(σs) is a sum of nχ distinct eigenvalues of σs, we can conclude that |χ(σs)| ≤ nsnχ,
and that equality holds precisely when χ(σs) = nsnχ.

Unlike the kernel of the character of a finite group, the kernel of a character of A scheme is not
always normal; i.e. the left cosets s(kerχ) and right cosets (kerχ)s need not agree for every s ∈ S.
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When T is a closed subset of A scheme S, then its adjacency algebra CT embeds as a semisimple
subalgebra of the semisimple algebra CS. In this situation, Frobenius reciprocity always applies,
which says that if V is a CS-module and W is a CT -module, then

HomCS(V, indCSCT (W )) ∼= HomCT (resCSCT (V ),W ).

(See Curtis and Reiner, Methods of Representation Theory, Volume I.) In terms of characters, this
says that if χ ∈ Irr(S) and ψ ∈ Irr(T ), then the multiplicity of χ in the induced character ψS is
the same as the multiplicity of ψ in the restricted character χT .

Definition 4.9. Let (X,S) be A scheme of finite order n, and let T be a closed subset of S. Define

xT = {y : (x, y) ∈ T} for each x ∈ X,
X/T = {xT : x ∈ X},
sT = {(xT, yT ) ∈ X/T ×X/T : (x, y) ∈ TsT}, and

S//T = {sT : s ∈ S}.

Theorem 4.10. Let (X,S) be A scheme of finite order n, and let T be a closed subset of S. Then

(a) {xT : x ∈ X} is a partition of X for which each class in the partition has size nT ;

(b) S//T is a partition of X/T ×X/T ; and

(c) (X/T, S//T ) is A scheme of order n
nT

.

Proof. (i) Suppose x, y ∈ X for which xT ∩ yT 6= ∅. If z ∈ xT ∩ yT , then (x, z), (y, z) ∈ T , so
(x, y) ∈ TT ∗ = T . Therefore, y ∈ xT , which implies that yT ⊆ xT . Similarly, xT ⊆ yT , so we
can conclude that xT = yT . Therefore, {xT : x ∈ X} is a partition of X. All of the sets in this
partition have size nT since nT = |{y ∈ X : (x, y) ∈ T}| = |xT |, for any fixed x ∈ X.

(ii) Let p, q ∈ S for which pT ∩ qT 6= ∅. If (xT, yT ) ∈ pT ∩ qT , then (x, y) ∈ TpT ∩ TqT . Let s
be the unique relation in S for which (x, y) ∈ s. Then s ∈ TpT ∩ TqT . Since the double cosets of
T in S are a partition of S, we conclude that TpT = TqT . But then pT = qT since these sets are
defined to contain exactly the same elements of X/T ×X/T , so the result follows.

(iii) We have that S//T is a partition of X/T ×X/T . 1X/T = {(xT, xT ) : x ∈ X} = (1X)T , so
1X/T ∈ S//T . If s ∈ S, then (sT )∗ = {(yT, xT ) : (x, y) ∈ TsT} = {(yT, xT ) : (y, x) ∈ T ∗s∗T ∗ =
T (s∗)T} = (s∗)T , so (sT )∗ ∈ S//T . We now need to show that the intersection numbers of S//T are
well-defined. Let p, q, r ∈ S and (xT, zT ) ∈ rT . Let u ∈ TrT with (x, z) ∈ u. We have that

|{yT ∈ X/T : (xT, yT ) ∈ pT , (yT, zT ) ∈ qT}| = 1
nT
|{y ∈ X : (x, y) ∈ TpT, (y, z) ∈ TqT}|

= 1
nT

∑
s∈TpT

∑
t∈TqT

astu.

This will be an integer since the first expression is an integer for fixed u ∈ TrT . If we replace (x, z)
by (x′, z′) where (x′, x), (z, z′) ∈ T , then we will be counting the same collection of y’s in X because
(x, y) ∈ TpT ⇐⇒ (x′, y) ∈ TpT and (y, z) ∈ TqT ⇐⇒ (y, z′) ∈ TqT . Therefore, this number
does not depend on the initial choice of (x, z) ∈ TrT . Therefore, the intersection number apT qT rT
is well-defined. This completes the proof that (X/T, S//T ) is A scheme of order n

nT
.

26



Remark 4.11. Suppose T is a strongly normal closed subset of A scheme S. Then every double
coset TsT for s ∈ S will be equal to sT , and nsT = nT . From the proof that S//T is A scheme, we
can see that the valency of the element pT is in general equal to

npT = 1
nT

∑
s∈TpT

∑
t∈Tp∗T

ast1

= 1
nT

∑
s∈TpT

ns

=
nTpT
nT

.

Therefore, if T is strongly normal in S, then every element of S//T has valency 1. So the quotient
scheme of S modulo a strongly normal closed subset will always be a thin scheme. The converse
also holds, that is, if the quotient scheme S//T is thin, then T is strongly normal in S.

Remark 4.12. If T is a closed subset of a scheme S, then we will see in the exercises that eT =
1
nT

∑
t∈T

σt is an idempotent of CS. As in the construction of the double coset algebra, the algebra

eTCSeT with unit element eT will be isomorphic to the adjacency algebra of the quotient scheme
C[S//T ]. It makes sense, therefore, to ask if the irreducible characters of S//T can be determined
from the irreducible characters of S. The answer is given in Hanaki and Hirasaka’s paper Theory
of Hecke algebras to association schemes, SUT Journal of Mathematics, Vol. 38, No. 1, (2002),
61–66. Whenever χ is an irreducible character of S for which e = eχeT 6= 0, eCSe will be a simple
component of eTCSeT , and all of the simple components of eTCSeT can be obtained in this way.
So every irreducible character of S//T is obtained by restricting a unique χ ∈ Irr(CS) to eTCSeT .
Furthermore, if ϕ ∈ Irr(C[S//T ]) is the restriction of χ ∈ Irr(CS), then it turns out that mϕ = mχ.
To see this, let ΓS be the standard character of S. Since ΓS(eT ) = 1

nT
ΓS(σs0) = nS

nT
= nS//T , and

ΓS(eTσseT ) = 0 when s 6∈ T , the restriction of ΓS to eTCSeT agrees with the standard character of
S//T . Working out both sides of the equality

ΓS(eχeT ) = ΓS//T (eχeT )

gives us
mχχ(eχeT ) = mϕϕ(eχeT ),

so mχ = mϕ, as claimed.

EXERCISES.

Exercise 4.1. Let T and U be closed subsets of a scheme S.

(a) Show that the set of T -U -double cosets {TsU : s ∈ S} is a partition of S.

(b) Show that if U ⊆ KS(T ), then TU is a closed subset of S.

Exercise 4.2. Show that the thin radical Oϑ(S) of a scheme S is equal to the strong normalizer
KS({1X}) of the trivial closed subset.

Exercise 4.3. For any subset R of a scheme S, define eR = 1
nR

∑
r∈S

σr.
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(a) Show that T is a closed subset of S ⇐⇒ eT is an idempotent of CS.

(b) Show that T is a normal closed subset of S ⇐⇒ eT is a central idempotent of CS.

Exercise 4.4. Let S be the scheme of order 12 from Chapter 3 whose character table is

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 mχ

χ1 1 1 1 1 2 2 2 2 1
χ5 1 1 −1 −1 −2 −2 2 2 1
χ2 1 −1 1 −1 0 0 0 0 3
χ4 1 −1 −1 1 0 0 0 0 3
χ3 2 2 0 0 0 0 −2 −2 2

(a) Determine the kernels of all the irreducible characters of S.

(b) Determine whether or not each of the kernels is a normal closed subset of S. (You can find
the basic matrix of S in Chapter 3.)

(c) Are all of the normal closed subsets of S strongly normal?

Exercise 4.5. Determine whether or not every closed subset of a commutative association scheme
is normal. If so, are they also strongly normal?

Exercise 4.6. Show that if T is a closed subset of a scheme S for which S//T is thin, then T is
strongly normal in S.

Exercise 4.7. Let S be a scheme of finite order.

(a) Show that the intersection of two strongly normal closed subsets of S is strongly normal.

(b) Let Oϑ(S) be the intersection of all strongly normal closed subsets of S. Show that Oϑ(S) is
a strongly normal closed subset of S. (This is known as the thin residue of S.)

Exercise 4.8. Suppose that T is a strongly normal closed subset of a scheme S, and let R be an
integral domain.

(a) Show that

RS =
⊕

sT∈S//T

R(TsT )

is an S//T -graded R-algebra; i.e. R(TpT )R(TqT ) ⊆ R(TrT ) whenever pT qT = rT in the
group S//T .

(b) Show that, if s 6∈ T , then it is not necessary for the sT -component R(TsT ) in the grading to
contain a unit of RS.

(Hint: It is possible for the adjacency matrices of every element in TsT to have two identical
rows.)

Exercise 4.9. Suppose ϕ is an irreducible character of a Schurian scheme S, and let G be the
combinatorial automorphism group of S. Prove that the degree of ϕ divides |G|.
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5 Homomorphisms of schemes

Definition 5.1. Let (X,S) and (X̃, S̃) be schemes. An scheme homomorphism from (X,S) to
(X̃, S̃) is a pair φ = (φX , φS) of functions φX : X → X̃ and φS : S → S̃ satisfying

(a) (x, y) ∈ s =⇒ (xφ, yφ) ∈ sφ, for all s ∈ S, and

(b) for all w, z ∈ X and s ∈ S, (wφ, zφ) ∈ sφ =⇒ ∃(x, y) ∈ s such that (xφ, yφ) = (wφ, zφ).

Proposition 5.2. Suppose φ : (X,S) → (X̃, S̃) is a scheme homomorphism. Then the following
hold:

(a) (pq)φ ⊆ pφqφ, for all p, q ∈ S;

(b) (s∗)φ = (sφ)∗, for all s ∈ S;

(c) (1X)φ = 1X̃ ;

(d) if T̃ is a closed subset of S̃, then T̃ φ−1 is a closed subset of S.

(e) if φX is surjective, then φS is also surjective; and

(f) if φX is surjective, and φ̃ : (X̃, S̃)→ ( ˜̃X, ˜̃S) is a scheme homomorphism of schemes, then the
composition φφ̃ is a scheme homomorphism.

Proof. (i) If s̃ ∈ (pq)φ, then s̃ = sφ for some s ∈ pq. If (x, y) ∈ s, then (xφ, yφ) ∈ sφ, and there
exists a z ∈ X such that (x, z) ∈ p and (z, y) ∈ q. Therefore, (xφ, zφ) ∈ pφ and (zφ, yφ) ∈ qφ, so
(xφ, yφ) ∈ pφqφ and thus sφ ∈ pφqφ.

(ii) If (x, y) ∈ s, then (yφ, xφ) ∈ (s∗)φ ∩ (sφ)∗, so (s∗)φ = (sφ)∗.
(iii) If x ∈ X, then (xφ, xφ) ∈ (1X)φ ∩ 1X̃ . Since S is a scheme, this implies (1X)φ = 1X̃ .
(iv) If pφ, qφ ∈ T̃ , then (pφ)(qφ) ⊆ T̃ . By (i), it follows that (pq)φ ⊆ T̃ , as required.
(v) Suppose φX is surjective. Let s̃ ∈ S̃, and suppose that (x̃, ỹ) ∈ s̃. There exists an (x, y) ∈

X × X such that (xφ, yφ) = (x̃, ỹ). If s is the unique element of S for which (x, y) ∈ s, then
(x̃, ỹ) = (xφ, yφ) ∈ sφ, so we must have that sφ = s̃.

(vi) The composition (φφ̃)X is well-defined since φX is surjective, and by (v), the composition
(φφ̃)S will be well-defined because φS is surjective. For all s ∈ S, we have that (x, y) ∈ s =⇒
(xφ, yφ) ∈ sφ =⇒ (xφφ̃, yφφ̃) ∈ sφφ̃. If (xφφ̃, yφφ̃) ∈ sφφ̃, then there exists a (x̃, ỹ) ∈ sφ such that
(x̃φ̃, ỹφ̃) = (xφφ̃, yφφ̃). Since φ is a homomorphism and φX is surjective, there exists a (u, v) ∈ s
such that (uφ, vφ) = (x̃, ỹ). Therefore, there exists a (u, v) ∈ s such that (uφφ̃, vφφ̃) = (xφφ̃, yφφ̃),
which shows that φφ̃ is a scheme homomorphism.

Definition 5.3. Let φ : (X,S)→ (X̃, S̃) be a scheme homomorphism. The kernel of φ is the closed
subset φ−1(1X̃) of S, which we will denote by kerφ.

Let T be a closed subset of a scheme (X,S). Then the map (X,S) → (X/T, S//T ) given by
x 7→ xT and s 7→ sT , for all x ∈ X and s ∈ S is a surjective scheme homomorphism with kernel
equal to T . To see this, first note that

(x, y) ∈ s =⇒ (x, y) ∈ TsT =⇒ (xT, yT ) ∈ sT .
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For the second property of scheme homomorphisms, we have that if (xT, yT ) ∈ sT , then (x, y) ∈
TsT , so there exists an (a, b) ∈ s for which (x, a) ∈ T and (b, y) ∈ T . Hence xT = aT and yT = bT ,
so (xT, yT ) = (aT, bT ) in X/T . Thus the map is a scheme homomorphism. It is clearly surjective.
Finally, the kernel is T because sT = 1X/T implies that for all (xT, Ty) ∈ sT = 1X/T = 1X

T ,
we have (x, y) ∈ T (1X)T = T , so s ∈ T . We will refer to this homomorphism as the canonical
homomorphism associated with the closed subset T , and denote it by mod T .

Theorem 5.4. (First Isomorphism Theorem for schemes) Let φ : (X,S) → (X̃, S̃) be a scheme
homomorphism with kernel T . Then

(a) for all x, y ∈ X, xφ = yφ ⇐⇒ xT = yT ;

(b) for all p, q ∈ S, pT = qT =⇒ pφ = qφ;

(c) φ is injective ⇐⇒ kerφ = {1X}; and

(d) the map φ̄ : (X/T, S//T )→ (X̃, S̃) given by (xT )φ̄ = xφ, (sT )φ̄ = sφ, for all x ∈ X and s ∈ S
is an injective scheme homomorphism.

Proof. (i) Let x, y ∈ X satisfying xT = yT . Then xT = yT =⇒ (x, y) ∈ T =⇒ (xφ, yφ) ∈ Tφ =
1X′ , so xφ = yφ.

If x, y ∈ X for which xφ = yφ, then (xφ, yφ) ∈ 1X′ . So if s is the element of S for which
(x, y) ∈ s, then we would have s ∈ kerφ = T , so xT = yT .

(ii) Let p, q ∈ S for which pT = qT . Then for all (x, y) ∈ p, then (xT, yT ) ∈ pT = qT , so (x, y) ∈
TqT . This implies that there exists (a, b) ∈ q such that (x, a), (b, y) ∈ T . Therefore, (xφ, yφ) ∈ pφ,
(xφ, aφ) ∈ Tφ = 1X̃ , (aφ, bφ) ∈ qφ, and (bφ, yφ) ∈ Tφ = 1X̃ . Thus (xφ, yφ) = (aφ, bφ) = qφ also,
and we have that pφ = qφ.

(iii) If φ is injective, then φS is injective, so we have that for all s ∈ S, sφ = 1X̃ =⇒ s = 1X ,
so kerφ = {1X}. Conversely, suppose kerφ = {1X}. If xφ = yφ and s ∈ S with (x, y) ∈ s, then
(xφ, yφ) ∈ sφ = 1X̃ , so s = 1X and we must have x = y. Therefore, φX is injective. Now suppose
p, q ∈ S with pφ = qφ, and let (x, y) ∈ p. We have (xφ, yφ) ∈ pφ = qφ. There exists an (a, b) ∈ q
such that (aφ, bφ) = (xφ, yφ). Since φX is injective, we must have (a, b) = (x, y), so p = q in S.
Therefore, φS is also injective, and so we have that φ is injective.

(iv) Since xT = yT =⇒ xφ = yφ and pT = qT =⇒ pφ = qφ for all x, y ∈ X and p, q ∈ S, we
have that φ̄ is well-defined.

If (xT, yT ) ∈ sT , then (x, y) ∈ TsT . As before, there exists an (a, b) ∈ s such that (aφ, bφ) =
(xφ, yφ). Therefore, (xT φ̄, yT φ̄) = (xφ, yφ) ∈ sφ = (sT )φ̄. Also, if (xT φ̄, yT φ̄) ∈ (sT )φ̄, then
(xφ, yφ) ∈ sφ, so there exists an (a, b) ∈ s for which (aφ, bφ) = (xφ, yφ). Since T = kerφ, we have
that (aT, bT ) = (xT, yT ) and (aT φ̄, bT φ̄) = (xT φ̄, yT φ̄). Therefore, φ̄ is a scheme homomorphism.

If sT ∈ kerφ, then sφ = 1X′ , so s ∈ kerφ = T . If (xT, yT ) ∈ sT , then (x, y) ∈ TsT = T , so
xT = yT , and thus (xT, yT ) ∈ 1X/T . Therefore, ker φ̄ = {1X/T}, so φ̄ is injective.

EXERCISES.

Exercise 5.1. Prove the Second Isomorphism Theorem for schemes: If T and U are closed subsets
of a scheme S for which U ⊆ KS(T ), then TU is a closed subset of S and

T//(T ∩ U) ∼= (TU)//U.
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Exercise 5.2. Prove the Third Isomorphism Theorem for schemes: If T and U are closed subsets
of S for which T ⊆ U ⊆ S, then

S//U ∼= (S//T )//(U//T ).

Exercise 5.3. Give an example of a scheme homomorphism φ : S → S̃ and a closed subset T of S
such that φ(T ) is not a closed subset of S̃. (Hint: It is necessary that kerφ be a non-normal subset
of S.)

Exercise 5.4. Recall that the set of combinatorial automorphisms Aut(S) of a scheme (X,S) was
defined to be the set of permutations of X for which (x, y) ∈ s =⇒ (xφ, yφ) ∈ s, for all s ∈ S.
The set of all scheme-automorphisms of (X,S) is the set of all bijective scheme homomorphisms
φ : (X,S)→ (X,S) which preserve structure constants; i.e. apφ,qφ,sφ = apqs, for all p, q, s ∈ S.

(a) Show that the set of all scheme-automorphisms of (X,S) is a group under composition. (We
will denote this by scheme-Aut(S).)

(b) Show that φ 7→ φS defines a group homomorphism from scheme-Aut(S) into Sym(S) with
kernel Aut(S).

(c) A combinatorial isomorphism of S is a bijective scheme homomorphism with domain S that
is induced by letting a permutation τ ∈ Sym(X) act on X×X and setting sτ = {(xτ, yτ) : (x, y) ∈
s}. Show that the scheme (X,Sτ) will have structure constants satisfying apτ,qτ,sτ = apqs, for all
p, q, s ∈ S.

(d) Find an example of a combinatorial isomorphism of a scheme that is not an automorphism.
(e) Show that schemes that are combinatorially isomorphic will have the same character tables.
(f) Show that every combinatorial isomorphism of a thin scheme is a combinatorial automor-

phism (hence a group automorphism).

Exercise 5.5. Let (X,S) be a Schurian association scheme. Let G = Aut(S), x ∈ X, and let H
be the stabilizer of x in G. Define a map φ : X → G/H by yφ = gH ⇐⇒ yg−1 = x, for all y ∈ X.

Show that φ induces a combinatorial isomorphism from (X,S)→ (G/H,G//H).
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6 Categorical Considerations for schemes

The modern approach to algebraic objects is to consider them from the point of view of categories.
The results of the previous two sections make it possible to do this for schemes. The result is a
category which in many ways resembles the category of groups, and after a minor modification the
category of schemes becomes a non-abelian exact category containing the category of groups as a
subcategory.

Start by considering the category of schemes, whose objects are schemes and whose morphisms
are scheme homomorphisms. For each pair of schemes (X,S) and (Y, T ), there is a set (possibly
empty) of scheme homomorphisms Hom((X,S), (Y, T )). The composition of two scheme homomor-
phisms φ : (X,S) → (Y, T ) and ψ : (Y, T ) → (Z,U) is defined whenever φ is surjective. (This
composition law is similar to that of groups.)

One of the fundamental properties of the category of groups is that it has a zero object, which is
a unique object 1 that is both an initial object and a terminal object. This means that for any object
A in the category, there are unique morphisms 1→ A (initial object) and A→ 1 (terminal object).
In the category of schemes, the trivial scheme (1, 1) = ({x}, {(x, x)}) is easily seen to be a terminal
object, because the only possible scheme homomorphism from an arbitrary scheme (X,S) into (1, 1)
sends every element of X to x and every element of S to {(x, x)}. On the other hand, given a scheme
(X,S), for any fixed x ∈ X we can define a scheme homomorphism φx : ({x}, {(x, x})→ (X,S) by
setting xφx = x ∈ X and (x, x)φx = 1X . Since x ∈ X was arbitrary, this scheme homomorphism is
not uniquely defined, so (1, 1) is not an initial object. In other words, if we approach the category
of schemes this way the category will not have a zero object.

However, the lack of a zero object can be alleviated after a minor modification. For every scheme
(X,S), instead of considering X as simply being the set {x1, . . . , xn}, we shall consider X as the
totally ordered set (x1, . . . , xn) with initial element ? := x1, which we shall refer to as the base point
of the scheme (X,S). The category of schemes is then defined to be the category whose objects
are the collection of finite schemes with base point and whose homomorphisms are the scheme
homomorphisms φ : (X, ?, S) → (Y, ?, T ) for which φ(?) = ?. Since the composition of two such
scheme homomorphisms will have this property, the composition law is basically the same as before.
However, now the category will have a zero object, because for any scheme (X, ?, S) with base point
there will be a unique scheme homomorphism from (1, ?, 1)→ (X, ?, S) that preserves base points.

The natural choice of base point for a thin scheme (G,G) is the identity element of G. If
ϕ : G → H is a homomorphism between finite groups, then the identity of H is the image of the
identity of G under ϕ. Thus group homomorphisms can be regarded as homomorphisms in the
category of schemes between thin schemes with base point. This means that the category of groups
can be regarded as a subcategory of the category of schemes. Since every scheme homomorphism
between two thin schemes is a group homomorphism, the category of groups is a full subcategory
of the category of schemes.

Note that a combinatorial automorphism of a scheme (X,S) can be regarded an isomorphism
in the category of schemes between (X, ?, S) and (X, ?′, S) by choosing the base point ?′ to be the
image of ?.

The next fundamental property of the category of groups is the existence of a direct product.

Definition 6.1. Let (X,S) and (Y, T ) be two schemes. The direct product of (X,S) and (Y, T ) is
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the scheme defined by
(X,S)× (Y, T ) := (X × Y, S ⊗ T ),

where S ⊗ T = {s⊗ t : s ∈ S, t ∈ T}, and we have that for each s ∈ S and t ∈ T ,

((x1, y1), (x2, y2)) ∈ s⊗ t ⇐⇒ (x1, x2) ∈ s and (y1, y2) ∈ t.

The definition of s ⊗ t is motivated by the categorical product of the corresponding graphs,
Indeed we have that the adjacency matrices σs⊗t = σs ⊗ σt for all s ∈ S and t ∈ T , and thus the
adjacency algebras have the property (as with groups) that

C[S ⊗ T ] ∼= CS ⊗C CT.

If (X, ?, S) and (Y, ?, T ) are schemes with base point, then the base point of the direct product
(X × Y, ?, S ⊗ T ) should be chosen to be (?, ?).

We leave it to the reader to define the direct product and the direct sum of an infinite number
of schemes, which can be done in a similar fashion to the way it is done with groups.

Once one has the idea of a direct product for finite schemes, one can define an internal direct
product, and write a scheme S as the direct product T ⊗ U of two of its closed subsets T and U if
S = TU , T ∩ U = 1, and every element s of S can be written uniquely as s = tu = ut for t ∈ T
and u ∈ U . Under these conditions, it is routine to check that S and T ⊗ U (and U ⊗ T ) are
combinatorially isomorphic, so we can write S = T ⊗ U .

Continuing on this line of ideas, we say that a finite scheme is indecomposable if it cannot be writ-
ten as the direct product of two of its nontrivial closed subsets. In group theory, the Krull-Schmidt
theorem asserts that every finite group can be written as the direct product of indecomposable finite
groups in essentially only one way – the list of indecomposable direct summands of a finite group
is uniquely determined up to group isomorphism. For commutative association schemes, this is a
theorem of Ferguson and Turull. This seems to be still open for schemes in general, though it is
routine to show that any scheme of finite order can be written as the direct product of indecom-
posable schemes. So the issue is to show that the list of indecomposable summands is unique up to
scheme isomorphism.

Another equally important issue is the notion of a composition series for schemes. The most
natural notion of a composition series for a scheme (X,S) is that of a nested sequence of closed
subsets

1 = T0 ( T1 ( T2 ( · · · ( Tk = S

with the property that each of the quotient schemes Ti//Ti−1 for i ∈ {1, . . . , k} is a primitive scheme.
A scheme is primitive if its only closed subsets are the trivial one and the scheme itself. It is routine
to show that every scheme of finite order has at least one composition series. However, unlike
the Jordan-Hölder theorem in finite group theory, the lists of composition factors occurring in two
different composition series for a scheme S do not have to agree up to scheme isomorphism. In
fact, it follows from a result of Rao, Ray-Chaudhuri, and Singhi concerning commutative table
algebras whose structure constants and Krein parameters are both nonnegative, which states that
the composition factors of a commutative association scheme will agree up to algebraic isomorphism
on their adjacency algebras. (This is Theorem II.9.11 in the book of Bannai and Ito.) But there are
examples that show the composition factors do not have to agree up to combinatorial isomorphism.
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One example is the scheme arising from the distance regular graph defined by the generalized 6-gon
with 126 vertices.

An alternative notion of a composition series of schemes weakens the requirement on the factors
to that of being simple schemes. In line with the notion of a simple group, (X,S) is a simple scheme
when 1 and S are the only normal closed subsets of S. Zieschang has shown that the analog of the
Jordan-Hölder theorem does hold in this setting: the list of simple composition factors of this type
appearing in any composition series for a scheme of finite order is unique up to order and scheme
isomorphism.

The most important property of the category of schemes has essentially already been established:
exactness. We have seen in the previous section that for any injective scheme homomorphism φ :
T → S, Tφ will be a closed subset of S, and so there is a canonical surjective scheme homomorphism
mod Tφ : S → S//(Tφ). In the category of schemes, this means that any exact sequence of the
form 1→ T → S can be canonically completed to a short exact sequence

1→ T
φ→ S → S//(Tφ)→ 1.

In addition, if we start with any surjective scheme homomorphism ψ : S → U , then there is a
canonical way to complete the exact sequence S → U → 1 to a short exact sequence

1→ kerψ → S → U → 1

in the category of schemes. These ideas are analogous to the notion of exactness of the category of
abelian groups. (The expert reader will recall that usually when one speaks of an exact category, one
starts with an additive category; i.e. one for which the set of homomorphims between objects has
an abelian group structure, which does not hold for the category of schemes.) So we can conclude
that the category of schemes is a non-additive exact category that contains the category of groups
as a full subcategory.

EXERCISES.

Exercise 6.1. Suppose that a scheme S = T ⊗U is the direct product of two closed subsets T and
U . Show that every s ∈ S can be uniquely expressed as s = tu for some t ∈ T and u ∈ U , and that
tu = ut.

Exercise 6.2. Suppose that we modify the category of commutative association schemes as we have
done with the modified scheme-category. This gives us a category Ã whose objects are commutative
association schemes with base point, and whose morphisms are given by the scheme homomorphisms
defined on commutative association schemes that map base points to base points.

Show that Ã is a exact category. Is Ã an additive exact category?

Exercise 6.3. It is possible for two association schemes (X,S) and (X,S ′) to be algebraically
isomorphic but not combinatorially isomorphic. A combinatorial isomorphism φ : (X,S)→ (X,S ′)
arises from a permutation φ of X, which induces a bijection (x, y) 7→ (xφ, yφ) on X × X, which
then transforms the relations of S into the relations of S ′. Such a map will automatically preserve
structure constants, i.e. apqs = apφqφsφ for all p, q, s ∈ S. An algebraic automorphism is simply a
bijection from S to S ′ that preserves structure constants.
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Show that the following pair of symmetric association schemes are algebraically, but not com-
binatorically, isomorphic. 

0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 0 1 1 2 2 3 3 3 3 2 2 2 2 3 3
1 1 0 1 3 3 2 2 3 3 2 2 3 3 2 2
1 1 1 0 3 3 3 3 2 2 3 3 2 2 2 2
2 2 3 3 0 1 2 3 2 3 2 3 2 3 1 1
2 2 3 3 1 0 3 2 3 2 3 2 3 2 1 1
2 3 2 3 2 3 0 1 2 3 3 2 1 1 2 3
2 3 2 3 3 2 1 0 3 2 2 3 1 1 3 2
2 3 3 2 2 3 2 3 0 1 1 1 3 2 3 2
2 3 3 2 3 2 3 2 1 0 1 1 2 3 2 3
3 2 2 3 2 3 3 2 1 1 0 1 2 3 3 2
3 2 2 3 3 2 2 3 1 1 1 0 3 2 2 3
3 2 3 2 2 3 1 1 3 2 2 3 0 1 2 3
3 2 3 2 3 2 1 1 2 3 3 2 1 0 3 2
3 3 2 2 1 1 2 3 3 2 3 2 2 3 0 1
3 3 2 2 1 1 3 2 2 3 2 3 3 2 1 0


and

0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 0 1 1 2 2 3 3 3 3 2 2 2 2 3 3
1 1 0 1 3 3 2 2 3 3 2 2 3 3 2 2
1 1 1 0 3 3 3 3 2 2 3 3 2 2 2 2
2 2 3 3 0 1 2 3 2 3 2 3 2 3 1 1
2 2 3 3 1 0 3 2 3 2 3 2 3 2 1 1
2 3 2 3 2 3 0 1 3 2 2 3 1 1 2 3
2 3 2 3 3 2 1 0 2 3 3 2 1 1 3 2
2 3 3 2 2 3 3 2 0 1 1 1 2 3 3 2
2 3 3 2 3 2 2 3 1 0 1 1 3 2 2 3
3 2 2 3 2 3 2 3 1 1 0 1 3 2 3 2
3 2 2 3 3 2 3 2 1 1 1 0 2 3 2 3
3 2 3 2 2 3 1 1 2 3 3 2 0 1 2 3
3 2 3 2 3 2 1 1 3 2 2 3 1 0 3 2
3 3 2 2 1 1 2 3 3 2 3 2 2 3 0 1
3 3 2 2 1 1 3 2 2 3 2 3 3 2 1 0



Exercise 6.4. Show that schemes that are algebraically isomorphic have identical character tables
(up to row and column permutation).

Exercise 6.5: Show that a finite scheme (X,S) of order n is primitive if and only if every non-
identity relation s ∈ S is the adjacency matrix of a connected graph with n vertices.

Exercise 6.6: Suppose that 1→ T → S → U → 1 is exact in the modified scheme category.

(a) Show that if T and S are Schurian, then U is Schurian.

(b) Show that if S and U are Schurian, then T is Schurian.

(c) Show that if T and U are Schurian, then S need not be Schurian.

(Hint: There is a nonschurian scheme of order 16 with a nontrivial thin radical.)

Exercise 6.7: Show that any scheme homomorphism between thin schemes can be regarded as a
group homomorphism between the respective groups.
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7 The Category of Table Algebras

While the modified scheme-category provides a convenient perspective, it certainly does not provide
a broad enough footing to work with all of the different aspects of schemes. For instance, both the
valency map and embeddings of fusion subalgebras into adjacency algebras provide examples of
natural algebra homomorphisms that do not arise from linear extension of scheme homomorphisms
to the adjacency algebra CS. In order to understand this phenomenon, the perspective of table
algebras will be useful.

As with the development of association schemes, table algebras were first introduced only in
the commutative case. The non-commutative table algebras we have introduced here were initially
referred to as generalized real nonsingular table algebras by Arad, Fisman, and Muzychuk.

Definition 7.1. A finite-dimensional unital C-algebra with basis B is a table algebra with table
basis B, denoted CB, if

(a) 1 ∈ B (1 being the multiplicative identity in CB);

(b) there is an involution ∗ on CB for which b∗ ∈ B, for all b ∈ B;

(c) all of the structure constants λbcd (b, c, d ∈ B) relative to the table basis B are nonnegative
real numbers;

(d) for all b, c ∈ B, λbc1 > 0 ⇐⇒ c = b∗;

(e) for all b ∈ B, λbb∗1 = λb∗b1.

If x =
∑
b∈B

xbb ∈ CB with each xb ∈ C, then we assume x∗ =
∑
b∈B

xbb
∗, where xb denotes complex

conjugation, and we define the support of x to be supp(x) = {b ∈ B : xb 6= 0}.
It should be clear that the adjacency algebra of a scheme is an example of a table algebra.

Indeed, many of the basic properties of table algebras are straightforward generalizations of the
properties of the adjacency algebras of schemes that we have already established. We will record
these here, leaving their proofs to the exercises.

Proposition 7.2. Let CB be a table algebra with table basis B.

(a) For all a, b, c ∈ B, λabc = λb∗a∗c∗.

(b) For all a, b, c, d ∈ B,
∑
e∈B

λabeλecd =
∑
e∈B

λaedλbce.

(c) For all b, c ∈ B, λbb∗c = λbb∗c∗

(d) The map t : CB → C given by t(
∑
b∈B

xbb) = x1 is a trace on CB; i.e. a C-linear map satisfying

t(xy) = t(yx), for all x, y ∈ CB.

(e) CB has a nondegenerate Hermitian form given by [x, y] = t(xy∗), for all x, y ∈ CB.

(f) For all a, b, c ∈ B, [ab, c] = [a, cb∗] and [a, bc] = [b∗a, c].
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(g) For all a, b, c ∈ B,
λabcλcc∗1 = λc∗ab∗λbb∗1 = λcb∗aλaa∗1.

(h) CB is a semisimple algebra.

Since t is a trace on the semisimple algebra CB for which the corresponding Hermitian form
[x, y] = t(xy∗) is nondegenerate, the restriction of t to any of the simple components in the Wed-
derburn decomposition CB =

⊕
χ∈Irr(CB) CBeχ has to be a nonzero scalar multiple of the usual

trace on the full matrix ring CBeχ. It follows that t can be expressed as
∑
χ

zχχ, for some nonzero

scalars zχ ∈ C. By an argument similar to the one we used for CC’s, one can establish the following
formula for the centrally primitive idempotents eχ of CB:

eχ = zχ
∑
b∈B

χ(b∗)

λbb∗1
b, for all χ ∈ Irr(CB).

One important property of table algebras is a generalization of the valency map.

Theorem 7.3. Let CB be a table algebra with table basis B. Then there exists a unique algebra
homomorphism | · | : CB → C for which |b| = |b∗| > 0 for all b ∈ B.

Proof. Let B̂ =
∑
b∈B

b, and let MB̂ be the matrix representing B̂ in the left regular representation of

CB. The entries of MB̂ are (
∑
b∈B

λbcd)d,c. We claim that all of these entries are positive. Indeed, for

each pair c, d ∈ B, we have

[cd∗, cd∗] = [d∗d, c∗c] ≥ λdd∗1λcc∗1 > 0,

so there exists a b ∈ B such that λcd∗b∗ 6= 0. By the preceding proposition, it follows that λbcd > 0
for this b, so the claim follows.

By the Perron-Frobenius Theorem, MB̂ has a unique eigenvalue µ of largest modulus, and this µ
is positive, has multiplicity 1, and its corresponding eigenvector v =

∑
b∈B

vbb has positive coordinates.

Note that for each c ∈ B, we have

MB̂(vc) = B̂(vc) = (B̂v)c = µ(vc),

so vc is another eigenvector for MB̂ with eigenvalue µ. Since µ has multiplicity 1, vc has to be
a scalar multiple of v for each c ∈ B. Therefore, there exists a function f : B → C such that
vc = f(c)v. Since all of the coordinates of v are positive real, we can show that for all c ∈ B,

f(c) =
1

vd

∑
b∈B

vbλbcd, for each d ∈ B.

In particular, f(c) is positive for all c ∈ B.
Being a projection onto a one-dimensional eigenspace, it is straightforward to show that f

extends to an algebra homomorphism from CB → C, which we will also denote by f .
Since f is a one-dimensional representation, f is an irreducible representation of the semisimple

algebra CB. It follows then that g(c) = f(c∗) is another irreduicble representation. If f 6= g, then
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f and g are inequivalent irreducible representations of CB. If ef and eg are the corresponding
centrally primitive idempotents, then we will have

0 = t(efeg) = zfzg
∑
b,c∈B

f(b∗)g(c∗)
λbb∗1λcc∗1

t(bc)

= zfzg
∑
b∈B

f(b∗)f(b)
λbb∗1

= f(zfzg
∑
b∈B

1
λbb∗1

b∗b),

which is a contradiction because 1 ∈ supp(b∗b) and f(c) > 0 for all c ∈ B. Therefore, we must
have f = g, so we can conclude that f(b) = f(b∗) for all b ∈ B. This concludes the proof of the
theorem.

The algebra homomorphism described in the preceding theorem is called the degree map of the
table algebra. If we rescale the table basis of CB by replacing every element of B with b̂ = |b|

λbb∗1
b,

then we obtain a table algebra CB̂ with the property that |b̂| = λb̂b̂∗1, for all b̂ ∈ B̂. This operation
is called standardizing the table algebra. The adjacency algebras of schemes provide examples of
table algebras for which the basis of adjacency matrices is standardized.

For commutative table algebras CB, one can define a Schur product abstractly by setting b ◦
c = δbcb for all b, c ∈ B, and the two algebras (CB, ◦) and (CB, ·) are isomorphic commutative
semisimple C-algebras. As we did earlier, one can define the Krein parameters to be the structure
constants for (CB, ◦) relative to its basis E of centrally primitive idempotents under ordinary
multiplication. If these Krein parameters are all nonnegative, then (CE, ◦) is a table algebra that
is dual to CB (and, indeed, the dual of CE is isomorphic to CB). However, it is an open problem
to find necessary and sufficient conditions on the structure constants of CB that are equivalent to
the Krein parameters being nonnegative.

Several categorical notions for schemes can be extended to the setting of table algebras, with sim-
ilar properties. Here we will provide a list, leaving the properties of these notions to be established
in the exercises.

Let CB be a table algebra with table basis B.

(a) A sub-table algebra is a table algebra CD that is a subalgebra of CB with the following
properties:

(a) for all d ∈ D, there are nonnegative real numbers µdb such that d =
∑
b∈B

µdbb;

(b) the subsets supp(d) := {b ∈ B : µbd > 0} of B as d runs over D are pairwise disjoint;
and

(c) supp(1) = {1}.
(Note that sub-table algebras of group algebras include Schur subrings, and sub-table
algebras of the adjacency algebras of schemes include fusion subrings.)

(b) If b, c ∈ B, then the support of bc is supp(bc) := {d ∈ B : λbcd > 0}, and if R, S ⊆ B, then

RS =
⋃
r∈R

⋃
s∈S

supp(rs).
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If R ⊆ B, then we let R∗ = {r∗ : r ∈ R}, R+ =
∑
r∈R

r, and the order of R is o(R) =
∑
r∈R

|r|2
λrr∗1

.

(c) A closed subset of B is a subset C ⊆ B for which C∗C ⊆ C.

Closed subsets of table bases are analogous to closed subsets in schemes and subgroups of
groups. Given a closed subset C of B and b ∈ B, the left coset Cb is

⋃
c∈C supp(cb). Right

cosets are defined similarly, and double cosets are defined to be the subsets

CbC =
⋃
c∈C

⋃
d∈C

supp(cbd).

The set of left cosets (resp. right cosets, double cosets) of a closed subset of B is a partition
of B.

(d) Given any closed subset C of a table basis B, the quotient table algebra C[B//C] is the table
algebra with table basis B//C = {b//C : b ∈ B}, where

b//C :=
1

o(C)
(CbC)+.

If C is a closed subset of a table basis B, then the structure constants of C[B//C] are given
in terms of the structure constants of CB by

λa//C,b//C,d//C =
1

o(C)

∑
e∈CaC

∑
f∈CbC

λefg,

for any g ∈ CdC.

One can check that the quotient table algebra of a group algebra CG relative to a subgroup
H is isomorphic to the ordinary Hecke algebra C[G//H], and the quotient table algebra of the
complex adjacency algebra of a scheme S relative to a closed subset T of S will be isomorphic
as algebras to C[S//T ].

(e) If CB and CD are table algebras, then B ⊗D := {b⊗ d : b ∈ B, d ∈ D} is a table basis for a
dim(B) dim(D)-dimensional table algebra C[B ⊗D] ∼= CB ⊗C CD called the tensor product
of the table algebras CB and CD. (This is analogous to the direct product of groups and
schemes.)

(f) If CB and CD are table algebras, we can form the wreath product C[B oD] with table basis
B oD given by

B oD = {1⊗ d : d ∈ D}
⋃
{b⊗D+ : b ∈ B \ {1}}.

Note that the wreath product C[B o D] is defined to be a certain sub-table algebra of the
tensor product C[B ⊗D] having dimension dim(D) + dim(B)− 1.

(g) An algebra homomorphism φ : CB → CD between two table algebras with respective table
bases B and D is a table algebra homomorphism if

(a) φ(1) = 1;
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(b) φ(b∗) = φ(b)∗,, for all b ∈ B;

(c) for all b ∈ B, there are nonnegative real numbers µb,d such that φ(b) =
∑
d∈D

µb,dd; and

(d) for all b, c ∈ B, supp(φ(b)) ∩ supp(φ(c)) 6= ∅ =⇒ there exists ρb,c > 0 such that
φ(b) = ρb,cφ(c).

Remark. The definitions we have given for sub-table algebras and for table algebra homomorphisms
are different than what has appeared in earlier literature. The motivation for the new definitions
is to include both the degree map CB → C and the inclusion map CT → CS of a fusion of a
scheme as examples of table algebra homomorphisms, and yet still have a definition which allowed
a reasonable composition law for homomorphisms. In previous treatments, homomorphisms of table
algebras have been restricted to those in which supp(φ(b)) consists of a single element of D in all
cases, which is useful when dealing with problems concerning duality of table algebras. We will
refer to this type of table algebra homomorphism as a fission-free table algebra homomorphism,
and say that a table algebra homomorphism has fission if there is at least one table basis element
for which the support of the image of this element has size larger than one.

It would be nice to know the conditions for a table algebra to arise from an association scheme.
Of course, this is the case if there is an injective table algebra homomorphism φ : CB →Mn(C) for
which φ(b) is a (0, 1)-matrix for every b ∈ B and and

∑
b φ(b) = J .

EXERCISES.

Exercise 7.1. Let CB be a table algebra, and let t be its trace. Let t =
∑

χ∈Irr(CB)

zχχ be the

expression of the trace t as a linear combination of the irreducible characters of CB, for some
nonzero scalars zχ ∈ C. Show that the formula for the unique centrally primitive idempotent eχ for
which χ(eχ) 6= 0 is

eχ = zχ
∑
b∈B

χ(b∗)

λbb∗1
b.

Exercise 7.2. Suppose that CD is a sub-table algebra of the table algebra CB. Prove that the
degree homomorphism of CD agrees with the restriction of the degree homomorphism of CB to
CD.

Exercise 7.3. Verify the following properties of closed subsets of a table basis B.

(a) If C ⊆ B is a closed subset, then 1 ∈ C.

(b) If C ⊆ B is a closed subset, then C∗ = C.

(c) If C ⊆ B is a closed subset and c, d ∈ C, then λcdb = 0 whenever b ∈ B \ C.

(d) If C ⊆ B is a closed subset, then CC is a sub-table algebra of CB.

(e) If C,D ⊆ B are closed subsets, then C ∩D is a closed subset.
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(f) If C ⊆ B is a closed subset, then the set {bC : b ∈ B} of left cosets of C in B is a partition
of B.

(g) If C ⊆ B is a closed subset, then the set {CbC : b ∈ B} of double cosets of C in B is a
partition of B.

Exercise 7.4. Let C be a closed subset of B. If µ : B → C× and the table basis B is re-scaled to
B′ = {µ(b)b : b ∈ B}, show that the order of C ′ = {µ(c)c : c ∈ C} will be equal to the order of C.

Exercise 7.5. Suppose CB is a table algebra with standardized table basis B. Show that for any
closed subset C of B, B//C is a standardized table basis of C[B//C], and o(B//C) = o(B)

o(C)
.

Exercise 7.6. Let C be a closed subset of a table basis B. Show that the map b 7→ b//C induces a
fission-free table algebra homomorphism from CB onto C[B//C].

Exercise 7.7. Since table algebra homomorphisms are algebra homomorphisms, the kernel of a ta-
ble algebra homomorphism φ : CB → CD is {α ∈ CB : φ(α) = 0}. A table algebra homomorphism
will be injective when the dimension of the image is the equal to the dimension of the domain,
which occurs precisely when the kernel is {0}.

(a) Find an example of a fission-free table algebra homomorphism that is not injective.

(b) Give an example of an injective table algebra homomorphism that has fission.

Exercise 7.8. Suppose that C,D are closed subsets of a table basis B that satisfy:

(a) for all c ∈ C and d ∈ D, cd = dc ∈ B;

(b) CD = B; and

(c) C ∩D = {1}.

Prove that CB ∼= C[C ⊗D] as table algebras.

Exercise 7.9. Show that the composition of table algebra homomorphisms is a table algebra
homomorphism.

Exercise 7.10. Let B be a standardized table basis. The set of linear elements of B is L(B) =
{b ∈ B : bb∗ = λbb∗11}.

(a) Show that |b| ≥ 1, and equality holds if and only if b is linear.

(b) Show that L(B) is a closed subset of B. Is L(B) a group?

Exercise 7.11. Let CB be a table algebra with table basis B. We say that two subsets S, T ⊆ B
are conjugate in B if there exists a b ∈ B such that bSb∗ ⊆ T and b∗Tb ⊆ S.

a) Show that if S, T ⊆ B are conjugate in B and b ∈ B for which bSb∗ ⊆ T and b∗Tb ⊆ S, then
bSb∗ = T and b∗Tb = S.

b) Show that conjugacy is an equivalence relation on the family of subsets of B.
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Exercise 7.12. Let CB be a table algebra with table basis B. If S ⊆ B, then the normalizer of S
is NB(S) = {b ∈ B : bSb∗ ⊆ S}. Show that if S is a subset of B, then NB(S) is a closed subset of
B, and bSb∗ = S for all b ∈ NB(S).

Exercise 7.13. Show that the modified category of schemes is a full subcategory of the restricted
category of table algebras whose morphisms consist only of fission-free homomorphisms. Show that
the category of schemes whose morphisms are table algebra homorphisms between schemes is a full
subcategory of the category of table algebras.
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8 Sylow Theory for Table Algebras

In this section we present an analog of Sylow’s theorem for certain types of table algebras that
includes Sylow’s theorem for finite groups, following the exposition of Blau and Zieschang that is
based on properties of standardized table algebras due to Arad, Fisman, and Muzychuk.

Proposition 8.1. Let CB be a table algebra with standardized table basis B. Let b ∈ B and let C
and D closed subsets of B. Then the following hold:

(a) For all d ∈ B,
∑
c∈B

λbcd = |b|;

(b) bC+ = |b|C+ ⇐⇒ bC ⊆ C;

(c) bC+ = |b|(bC)+ ⇐⇒ supp(b∗b) ⊆ C;

(d) bC+ = β(bC)+ for some positive β ≤ |b|;

(e) C+bD+ = µ(CbD)+, for some positive integer µ; and

(f) o(CbD) = o(D) ⇐⇒ b∗Cb ⊆ D.

Proof. (i): Since B is a standard table basis, we have∑
c∈B

λbcd|d| =
∑
c∈B

λd∗bc∗|c∗| = |d∗b| = |d||b|,

so (i) follows by cancelling |d|.
(ii): bC+ = |b|C+ =⇒ supp(bc) ⊆ C for every c ∈ C =⇒ bC ⊆ C.
On the other hand, suppose bC ⊆ C. Then bC+ =

∑
c∈C

(
∑
d∈C

λbcdd) =
∑
d∈C

µdd, where 0 < µd =∑
c∈C

λbcd ≤ |b| by part (i). Since |bC+| = |b||C+| = |b|
∑
d∈C
|d|, we can conclude that µd = |b| for every

d ∈ C, and (ii) follows.
(iii): From the proof of (ii), we see that bC+ = |b|(bC)+ ⇐⇒

∑
c∈C

λbcd = |b| for every d ∈ bC.

By (i), this is happens if and only iff λbed = 0 for all e ∈ B \ C, for all d ∈ bC. But λbed = 0 ⇐⇒
λb∗de = 0, so this is equivalent to b∗d ⊆ C for all d ∈ bC. Finally, b∗d ⊆ C, for all d ∈ bC is
equivalent to b∗bC ⊆ C, which is equivalent to supp(b∗b) ⊆ C, so (iii) holds.

(iv): Write bC = {b = b1, b2, ..., bm}. Since biC = bC for all bi ∈ bC, we have that biC
+ =

m∑
j=1

µijbj with µij > 0, for all i, j ∈ {1, . . . ,m}. If we set M = (µij)ij, then the fact that (biC
+)C+ =

|C+|biC+ implies that M2 = |C+|M . Since every entry of M is positive, this implies that each
column of M is an eigenvector for the Perron-Frobenius eigenvalue of M . Since this eigenvalue has
multiplicity 1, this implies that M has rank 1. Also, (bC)+C+ = |C+|(bC)+ by (ii), so |C+|

∑
j

bj =∑
i

biC
+ =

∑
i

∑
j

µijbj =
∑
j

(
∑
i

µij)bj, which implies that every column of M has the same column

sum |C+|. Since M has rank 1, every column of M has to be the same vector. Therefore, all of the
entries µ1j are equal to the same positive number β, and we can conclude that bC+ =

∑
j

µ1jbj =

43



β(bC)+. Since it is easy to see that β =
∑
c∈C

λbcd for all d ∈ bC, it follows from (i) that β ≤ |b|,

which proves (iv).
(v): C+bD+ =

∑
d∈CbD

µdd for some µd > 0, so it suffices to show that all of these µd are equal

to one another. By (iv), we have C+bC+ = βC+(bD)+ = β
∑
d∈bD

αd(Cd)+. Therefore, µe = µf

whenever e, f lie in the same right coset of C. Similarly, we can show that µe will be equal to µf
whenever e, f lie in the same left coset of D. If e, f ∈ CbD are arbitrary, then there exists a c ∈ C
and d ∈ D such that f ∈ supp(ced). But then there exists a g ∈ B such that g ∈ supp(ce) and
f ∈ supp(gd), so we have µe = µg = µf , for all e, f ∈ CbC, as required.

(vi): We have that o(Cb)o(D) = |(Cb)+||D+| = |
∑

e∈CbD

∑
a∈Cb

(
∑
d∈D

λade)e| ≤ |(Cb)+||(CbD)+|.

Therefore, o(D) ≤ o(CbD), and equality holds if and only if λabe = 0 for all a ∈ Cb, b ∈ B \ D,
and e ∈ CbD. Since λabe = 0 ⇐⇒ λe∗ab∗ = 0, this is equivalent to (CbD)∗(Cb) ⊆ D, which is
equivalent to b∗Cb ⊆ D, as required.

It goes without saying that the analogous properties for right cosets can be established in a
similar fashion, as it can be shown that o(CbD) = o(C) ⇐⇒ bDb∗ ⊆ C. The analog of Sylow’s
theorem we seek applies to table algebras that are p-fractional and p-valenced for some prime p.
We now define these notions.

Definition 8.2. Let CB be a table algebra with standardized table basis B. Let p be a prime. We
say that CB is p-fractional if for all b, c, d ∈ B, there exists nonnegative integers n,m such that
λbcd = n

pm
, and CB is p-valenced if for all b ∈ B, there exists a nonnegative integer ` such that

|b| = λbb∗1 = p`.

Note that if G is a finite group, then the group algebra CG is a p-fractional p-valenced table
algebra for any prime p.

Definition 8.3. Let CB be a table algebra with standardized table basis B. A closed subset C of B
is a closed p-subset of B if CC is p-valenced and o(C) is a power of p. A closed p subset P of B is
a Sylow p-subset of B if P is a closed p-subset of B for which o(B//P ) is not divisible by p. The
set of Sylow p-subsets of B is denoted by Sylp(B).

Lemma 8.4. Let p be a prime, and suppose CB is a p-fractional p-valenced table algebra with
standardized table basis B. Suppose C and D are closed p-subsets of B.

(a) For all b ∈ B, o(bC), o(Cb), o(CbD) are powers of p that are divisible by o(C).

(b) C[B//C] is a p-fractional p-valenced table algebra with standardized table basis B//C.

(c) If p divides o(C), then p divides the order of the group L(C) consisting of linear elements of
C.

Proof. (i): Let b ∈ B. It suffices to show that o(CbD) is a power of p that is divisible by o(C).
Since CB is p-fractional, we have by the previous lemma that there exists a positive µ ∈ Z[1

p
] such

that C+bD+ = µ(CbD)+. If µ = m
pk

for some positive integer m coprime to p and nonnegative

integer k, then we have that |C+||b||D+| = m
pk
|(CbD)+|. Since CB is p-valenced, the left hand side
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of this equation is a power of p. Therefore, m has to be 1 and |(CbD)+| = o(CbD) is a power of p
that is divisible by |C+| = o(C).

(ii): In a previoius exercise we saw that C[B//C] is a table algebra with standardized table basis

B//C. The degree of each b//C ∈ B//C is |b//C| = o(CbC)
o(C)

, which is a power of p by (i). Therefore,

C[B//C] is p-valenced. Since o(C) is a power of p and CB is p-fractional, it follows from the formula
for structure constants of CB that each of these is an element of Z[1

p
].

(iii): For x ∈ C, we have that x ∈ L(C) ⇐⇒ |x| = 1, so o(L(C)) is the order of the group
L(C). Since CB is p-valenced, |y| will be a positive power of p for every y ∈ C \ L(C). Therefore,
o(C) and o(C \ L(C)) = o(C) − o(L(C)) are both divisible by p, so o(L(C)) is also divisible by
p.

Theorem 8.5. (Sylow’s theorem for Table Algebras) Let p be a prime, and suppose CB is a
p-fractional p-valenced table algebra with standardized table basis B. Then the following hold.

(a) Sylp(B) 6= ∅.

(b) If P is a closed p-subset of B for which p divides o(B//P ), then there exists a closed p-subset
P ′ such that P ⊆ P ′ ⊆ NB(P ) and o(P ′) = po(P ).

(c) Any two Sylow p-subsets of B are conjugate in B.

(d) |Sylp(B)| ≡ 1 mod p.

Proof. (i): If p does not divide o(B), then the closed subset {1} of B is a Sylow p-subset of B by
definition. If p divides o(B), then by the previous lemma, o(L(B)) is divible by p. Therefore, B
has closed p-subsets, and so since B is finite it must have maximal closed p-subsets. The fact that
every maximal closed p-subset is a Sylow p-subset in this case will be a consequence of (ii).

(ii): Since p divides o(B//P ), the order of the group L(B//P ) must be divisible by p. By Cauchy’s
theorem, L(B//P ) contains a subgroup H of order p. Since H is a closed subset of B//P , there
exists a closed subset P ′ of B such that P ⊆ P ′ and P ′//P = H. Since P ′//P consists of linear
elements of B//P , we have that P ′ ⊆ NB(P ). Furthermore, p = o(P ′//P ) = o(P ′)/o(P ), proving
(ii).

(iii): Suppose P,Q ∈ Sylp(B). For each P -Q-double coset PbQ for b ∈ B, we have that o(PbQ)
is a power of p that is divisible by o(P ). Since the set of P -Q-double cosets is a partition of B, there
is at least one P -Q-double coset Pb0Q for which o(P ) = o(Pb0Q) = o(Q). But we know that these
equalities can hold if and only if b0Qb

∗
0 ⊆ P and b∗0Pb0 ⊆ Q. Therefore, P and Q are conjugate in

B.
(iv): Let P be a Sylow p-subset of B. If P = {1}, then it is the unique Sylow p-subset of B, so

we are done. If P 6= {1}, then o(L(P )) is divisible by p, and hence L(P ) contains a subgroup H
of order p. H acts by conjugation on the set of all Sylow p-subsets of B. Since the orbits of this
action have sizes either 1 or p, it suffices to show that the number of Sylow p-subsets that are fixed
under conjugation by H is congruent to 1 modulo p.

If Q ∈ Sylp(B) is fixed under conjugation by H, then H ⊆ NB(Q), and thus HQ is a closed
subset of B. If H 6⊆ Q, then o(HQ//Q) = o(H) = p, which is a contradiction because B does
not contain a closed subset of order po(Q). So we must have that H ⊆ Q whenever Q is a Sylow
p-subset of B that is fixed under conjugation by H.
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This implies that there is a bijection between the set of Sylow p-subsets of B that are fixed under
conjugation by H with the set of Sylow p-subsets of B//H. By induction on o(B), this number is
congruent to 1 modulo p, so the result follows.

EXERCISES.

Exercise 8.1. Let p be a prime, and suppose CB is a p-fractional p-valenced table algebra with
standardized table basis B. Let C be a fixed Sylow p-subset of B. Show that the number of Sylow
p-subsets of B is |{b ∈ B : supp(b∗b) ⊆ C}|.

Exercise 8.2. Let p be a prime, and suppose CB is a p-fractional p-valenced table algebra with
standardized table basis B. Show that B has a unique Sylow p-subset.

Exercise 8.3. Suppose (X,S) is a p-valenced scheme. Let P be a Sylow p-subset of S, and let
K = KS(P ) be the strong normalizer of P in S; i.e. s∗Ps = P for all s ∈ K.

a) Show that, for all s ∈ S, s∗s ⊆ K =⇒ s∗s ⊆ P .
Hint: K//P = Oϑ(S//P ).

b) Show that the number of Sylow p-subsets of S is bounded above by
nS//K

nOϑ(S//K)
.

Exercise 8.4. Determine all of the Sylow 2-subsets of the scheme of order 12 with basic matrix

d∑
i=0

iσi =



0 1 2 3 4 4 5 5 6 6 7 7
1 0 3 2 4 4 5 5 6 6 7 7
2 3 0 1 6 6 7 7 4 4 5 5
3 2 1 0 6 6 7 7 4 4 5 5
4 4 7 7 0 1 6 6 5 5 2 3
4 4 7 7 1 0 6 6 5 5 3 2
5 5 6 6 7 7 0 1 2 3 4 4
5 5 6 6 7 7 1 0 3 2 4 4
7 7 4 4 5 5 2 3 0 1 6 6
7 7 4 4 5 5 3 2 1 0 6 6
6 6 5 5 2 3 4 4 7 7 0 1
6 6 5 5 3 2 4 4 7 7 1 0



.

Exercise 8.4. Determine all of the Sylow 3-subsets of the scheme of order 18 with basic matrix
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d∑
i=0

iσi =



0 1 2 3 4 5 6 6 6 7 7 7 8 8 8 9 9 9
1 0 4 5 2 3 8 8 8 9 9 9 6 6 6 7 7 7
2 5 0 4 3 1 8 8 8 9 9 9 6 6 6 7 7 7
3 4 5 0 1 2 8 8 8 9 9 9 6 6 6 7 7 7
5 2 3 1 0 4 6 6 6 7 7 7 8 8 8 9 9 9
4 3 1 2 5 0 6 6 6 7 7 7 8 8 8 9 9 9
6 9 9 9 6 6 0 4 5 8 8 8 7 7 7 1 2 3
6 9 9 9 6 6 5 0 4 8 8 8 7 7 7 2 3 1
6 9 9 9 6 6 4 5 0 8 8 8 7 7 7 3 1 2
7 8 8 8 7 7 9 9 9 0 4 5 1 2 3 6 6 6
7 8 8 8 7 7 9 9 9 5 0 4 2 3 1 6 6 6
7 8 8 8 7 7 9 9 9 4 5 0 3 1 2 6 6 6
9 6 6 6 9 9 7 7 7 1 2 3 0 4 5 8 8 8
9 6 6 6 9 9 7 7 7 2 3 1 5 0 4 8 8 8
9 6 6 6 9 9 7 7 7 3 1 2 4 5 0 8 8 8
8 7 7 7 8 8 1 2 3 6 6 6 9 9 9 0 4 5
8 7 7 7 8 8 2 3 1 6 6 6 9 9 9 5 0 4
8 7 7 7 8 8 3 1 2 6 6 6 9 9 9 4 5 0



.
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