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1 The Algebraic Definition of Coherent Configurations and
Association Schemes

Let X be a finite set of size n. If r is a relation on X (i.e. r C X x X), then the adjacency matriz
o, is the n x n (0, 1)-matrix whose (7, j) entries are 1 if (i,7) € r and 0 otherwise. If S is a set of
relations on X, then we define the complex adjacency algebra of S to be the subalgebra of M, (C)
generated by the adjacency matrices of relations in S. Algebraic properties of and relationships
between the relations in S can be detected in the adjacency algebra. We will particularly interested
in cases when the adjacency matrices define a basis for an associative algebra with nonnegative
integer structure constants. Further properties arise when the adjacency matrices commute, or
when the eigenvalues of the adjacency matrices lie in a fixed subring of C. Observe that S is a

partition of X x X if and only if > o, = J, the all 1’s matrix.
resS

Definition 1.1. Let X be a set (not empty and not necessarily finite), and let S be a set of relations
on X. The pair (X,S) is a coherent configuration (CC) if

(a) S is a partition of X x X;
(b) forallse S, s* ={(y,x) € X x X : (z,y) € s} € S;
(c) there is a subset A C S such that | Jsep 0 = 1x (the equality relation on X ); and

(d) for all p,q,r € S, there is a cardinality a,q such that for all (x,z) € r, {x € X : (y,x) €
D, (x,2) € q}| has cardinality a,q, .

When (X, S) is a CC, we will sometimes say that S is a CC on X. By convention, when S
is a CC on X we insist that ) ¢ S. The relations in the set A in the definition are called the
fibres of S. When the set X is a finite ordered set (usually taken by default to be {1,2,...,n} for
some positive integer n), any CC S on X is a finite set of relations {s1,..., sq}, and one can define
adjacency matrices o, for ¢« = 1,...,d. The CC definition is equivalent to the set of adjacency
matrices satisfying the following five properties:



(a) for each s € 9, o, is a (0, 1)-matrix;

(b) > os=J (the all 1’s matrix);

ses

(c) for each s € S, (0,)T = oy for some s* € S

(d) there is a subset A C S such that > o5 = I; and
seA

e) there is a set of non-negative integers {a,, : p,q,r € S} such that for all s,t € S
Pq

Op0y = E ApgrOr--

res

The non-negative integers appearing in the definition are the intersection numbers of the CC.
When X is a finite set of size n then we say that (X,.S) has order n. When (X, 5) is a CC of
finite order, its intersection numbers are the structure constants for the adjacency algebra CS.
The dimension of the adjacency algebra is precisely the size of S. Since the structure constants
of this adjacency algebra are nonnegative integers, we can define the integral adjacency ring Z.S in
the obvious way, and this leads to adjacency algebras over any field and adjacency rings over any
commutative ring with unity in the obvious fashion (i.e. the adjacency ring over the commutative
ring with unity R is just R ®z ZS.)

The following properties of CC’s are immediate from the definition.

Proposition 1.2. Let (X, S) be a CC of order n, and let A = {61,...,0;} be the set of fibres of S.
Then

(a) the fibres provide a natural partition {Xi,..., X} of X for which each 6; = {(x,x) : v € X;};
(b) forallse S, s C X; x X; for some 1 <1i,j < f;

(c) the structure constants of the CC have the property that for all p,q,r,s € S,

g QgriQpts = E ApgtQrs;

tesS tes

(d) the adjacency algebra CS is a self-adjoint subalgebra of M, (C) that is closed under pointwise
(Schur or Hadamard) multiplication and contains J (i.e. CS is a coherent algebra).

(e) CS is a semisimple algebra.
Proof.  (a) Obvious.

(b) Let s € S, and let 4,5 € {1,..., f}. Then ¢;s0; is an nonnegative integer linear combination
of the {0, : r € S}. If 6;50; # 0, then its only nonzero entries will be 1’s that occur in the
positions (z,y) for which (z,y) € s N (X; x X;). Since there is a unique relation in S with a
nonzero entry in any given position, this forces §;s0; = s, and so s C (X; x X;) for this ¢ and

VE



(c) Since CS is an associative algebra, we have (o,0,)0, = 0,(0,0,), for all p, ¢, € S. Interpreting
this in terms of structure constants gives the desired formula.

(d) This follows easily from the definition since the basis consisting of the adjacency matrices is
closed under the transpose.

(e) It is well-known that self-adjoint C-subalgebras of M,,(C) are always semisimple.
[

There are several specific kinds of CC’s and related algebras that we will deal with in these
notes.

1. Association schemes are homogeneous CC’s, those with A = {I = sy}. Since these are
the central theme of these notes, we will often refer to them simply as ”schemes” for short,
and write S = {sg, s1,. .., Sq¢} when the scheme has d nonidentity relations (i.e. the scheme is
of rank d).

2. Commutative Association schemes are schemes whose adjacency matrices commute.

3. Symmetric association schemes are schemes for which every o, is a symmetric matrix. Such
schemes are automatically commutative.

4. Thin association schemes are schemes in which every relation has exactly one 1 in every row
and column. Note that the adjacency matrices of thin schemes form a finite group of order n,
and conversely every finite group of order n can be identified with a thin scheme by means of
its left regular representation.

5. Table Algebras are a finite-dimensional algebras A with a distinguished basis B = {b; =
1,by,...,b.} and an involution * for which B* = B, and the structure constants {\;;;, : 0 <
i,j,k <r} determined by the basis B are nonnegative real numbers for which \;;; > 0 if and

only if b; = (b;)*.

EXERCISES:
Exercise 1.1: Prove that if the adjacency matrices of CC’s are all symmetric, then the adjacency
matrices commute.

Exercise 1.2: Suppose (X, S) is a symmetric association scheme whose adjacency matrices form
a group of order n. Characterize the isomorphism type of the group.

Exercise 1.3: Suppose (X, S) is a non-symmetric commutative association scheme whose adjacency
matrices form a group of order n. What can be said about the group?

Exercise 1.4: Prove that the only (0, 1)-matrices in the adjacency algebra of a CC (X, .S) are the
adjacency matrices corresponding to the relations in S.

Exercise 1.5: The adjacency algebras of small coherent configurations can be conveniently pre-
sented in terms of a basic matrix. If {s; : i = 0,1,...,d} are the relations of S, then the basic matrix



d
for S'is Y io,,. For each of the following basic matrices, characterize the underlying configuration
i=0
as being a CC, an association scheme, a commutative association scheme, a symmetric association

scheme, a thin association scheme (i.e. a group), or a thin commutative association scheme (i.e. an
abelian group).

01122
03 4 02 2 01 2 10212
@5 1 6] ®|3 14 (@©]|20 1] @1 2021
7 8 2 341 120 2120 1
22110

0 1 2233445 5]

0 1 23 445 5] 104455223 3
10324455 2503234514
320150544 2530325441
@23 105544 18423025154
55440123 3432201545
554410 3 2 5254410323
44553201 5245143032
4 4552310 4315452302
4351543220

Exercise 1.6: Calculate the intersection numbers for the CC’s in part (b) and (d) of Exercise 1.5.

Exercise 1.7: Let (X, S) be a scheme, and let s € S. Show that the row and column sums of the

adjacency matrix o, are all equal to the same positive integer n,. (This integer is called the valency
of s.)

Exercise 1.8: Let (X, S) be a scheme, and let ng be the valency of each s € S. Show the following:
(a) for all ;s € S, ap15 = A1ps = Ops;
(b) for all ¢,7,s € S, Agrs = Qprgrsr;

c) for all s € S, ng = ng;

)

)

()

(d) if 1 < apge1, then p = g;
(e) for all ¢,r,s € S, agsry = Ars=gNy;
(1

for all g,r € S,

E Qgsr = E Asqr = E Asgrr = Ng; and

seS seS seS

g AgrsTs = MgNy.

seS

(g) for all ¢,7 € S,



2 Connections between association schemes, graphs, per-
mutation groups, and group rings.

Association schemes originated as a combinatorial objects in design theory that combines properties
of graphs and permutation groups. The connection with graphs is quite clear. The elements in
every CC of order n can be viewed as an algebraic decomposition of the complete directed graph
K, (including loops at each vertex) with the property that for each subgraph in the decomposition,
the subgraph formed by reversing its arrows is also one of subgraphs in the decomposition. Here
when we say that it is an algebraic decomposition we mean that every edge appears exactly once
among the subgraphs in the decompositon, and that the adjacency matrices of the subgraphs in the
decomoposition form a basis for an algebra with nonnegative integer structure constants.

On the other hand, some symmetric association schemes arise naturally from distance-regular
graphs. An (undirected and loopless) graph I' = (I'y, ['g) consists of a set of vertices Iy and a set
of edges I'g CI'y x I'y for which (v,d) € 'y = (6,7) € I'g and (v,7) € I'g, for all 4,6 € 'y If
v €Ty, then I'y(y) ={d € I'y : (v,0) € I'g} is the set of neighbours of . The vertices in I'y(7y) are
said to be at distance 1 from v. The graph I' is regular of valency k if |['1(v)| = k for all v € T'y.

Inductively, we say that a vertex ¢ is at at distance r from a vertex ~y if r is the length of the
shortest possible sequence of vertices

7= 507517527 EEE) 57“ = 67

for which (9;-1,0;) € I'g for all i € {1,...,r}. We denote the set of vertices at distance r from =y
by T'v(v). We also set I'g(y) = {7}. If [ is a connected graph with finitely many vertices, then it
is easy to see that if we fix v € T', then there exists a positive integer D such that I will be the
disjoint union of the I';(), for i € {0,1,2,..., D}. This number is called the diameter of the graph
I.

When T is a regular graph of valency k& having v vertices, we can define a set of v x v (0,1)-
matrices Ag, A, ..., Ap by setting (A4;),s = 1if § € I';(y) and (A;),s = 0 otherwise. In this case we
will have Ag = I (the v x v identity matrix), and A; = A := the adjacency matrix of I". The matrix
A; is the distance-i adjacency matriz of the graph I'. Since for every pair (v,d) € I'g, § € T';(v) for
precisely one of the i’s, and so we will have that Ag+ Ay +---+ Ap = J, the v X v identity matrix.

Definition 2.1. A connected reqular graph I of valency k and diameter D 1is called distance-
regular if for all i = 0,1,..., D, there are fixred nonnegative integers ¢; and b; such that for every
pair of vertices vy, for which ¢ € T;(7),

|F1(5) N Fz—1(7)| = Gy, and

IT1(8) NTiga ()| = by

We will always have co = bp =0, ¢ =1 and by = k. Furthermore,
Ti(0) N =k —bi —ci == a

is also constant for every pair of vertices ,d for which § € T';(y). The numbers a;,b;,c; are the
intersection parameters of the distance-regqular graph T.



Proposition 2.2. Let I" be a distance-reqular graph of valency k, diameter D, having v vertices, and
let ag,...,ap,bo,...,bp,co,...,cp be the intersection parameters of I'. Then the distance adjacency
matrices Ag, A, A, ..., Ap are the adjacency matrices of a symmetric association scheme of rank
D + 1 whose intersection parameters are completely determined by

AA; = b1 Aioy + @i Ay + i1 Aiga,
with the convention that A_y = Apy1 =0, and b_y = cpyq1 = 0.

Proof. 1t is straightforward to use induction and the definition of the intersection parameters of a
distance-regular graph to establish the formula. We can therefore conclude that {Ag, Ay,..., Ap}
generates a D+ 1-dimensional algebra with nonnegative integer structure constants. The conclusion
then follows from the fact that the A;’s are all symmetric and Ag + Ay +---+ Ap = J. O

If A is the adjacency matrix of a distance-regular graph, then the left operator for the action
of A on the space spanned by the A; in the above proposition in the basis given by the A;’s is the
tri-diagonal matrix

0 &k 0 0 7
1 aq b1 0
[A]: 0 e 'Ctz by
0
cp—1 ap—1 bp_y
0 0 Cp ap

Symmetric association schemes of rank 3 arise from distance-regular graphs of diamter 2, which
are known as strongly reqular graphs. An interesting example of a strongly regular graph of valency
3 is the Petersen graph P. It has vertex set Py = {1,2,...,10} and edge set

7DE‘ = {(17 2)7 (27 3)7 (37 4)’ (47 5)7 (57 1)’ (17 6)7 (67 8)7 (87 10)7
(10,7), (7,9), (9,6), (7. 2), (3.8), (4,9, (5,10)}.

For the Petersen graph P, we have k = 3, D = 2, v = 10, and the relevant equations are
AAQ = A, A2 = 3140 -+ AQ, and AAQ = 2A1 + 2A2
So the left operator for A is

4] =

O = O
_ O W
DN O

The reader can check that the only other nontrivial structure constants in the association scheme
arise from the equation A2 = 6Ag + 4A; + 3A,. Since Ay = A? —3Ay = A? — 31, the eigenvalues of
all the adjacency matrices in this association scheme are completely determined by the spectrum of
A. Indeed, this will be the case for all association schemes arising from distance-regular graphs in
this way, because each of the matrices A; will be a polynomial of degree 7 evaluated at the matrix

A.

We now turn to connections between association schemes and permutation groups. Recall that
for any permutation 7 € S,,, the symmetric group on n symbols, the permutation matrix P, denotes
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the image of 7 under the permutation representation for the action of S, on X = {1,2,...,n}. This
means that if ey, ..., e, denotes the standard basis of column vectors for C", then 7(i) = j <=
P.(e;) =ej < (F;);i =1, and all other entries of P; are 0. So the permutation matrices are
precisely the (0, 1)-matrices with a single 1 in every row and column.

Proposition 2.3. Let (X, S) be an scheme of order n > 1, and let ng be the valency of each s € S.
Then each adjacency matrix o4 is the sum of exactly ng permutation matrices.

Proof. Let s € S. Then o, has exactly ng 1’s in every row and column, with all other entries being
0. This implies that o, is of the form nsA, where A is a doubly stochastic matrix, a nonnegative
matrix whose row and column sums are all equal to 1, and A has exactly n, nonzero entries in every
row and column. It suffices to show that for any doubly stochastic matrix A, there is a permutation
matrix P for which A;; =0 = F,;; = 0. For this, we use an argument for a theorem of Birkhoft
due to Saunders and Schneider that is outlined in Horn and Johnson’s book Matriz Analysis.

Induct on the number of non-zero entries of A. We may assume that there is a row of A with
more than one nonzero entry, for otherwise A is a scalar multiple of a permutation matrix. Choose
a row of A with a maximal number of nonzero entries, and pick one of the nonzero entries A;, ;, in
this row. Since A is doubly stochastic, there will be another nonzero entry A;, ;, in the j;-th column
with i1 # 4. Similarly, there will be another nonzero entry A;, j, in the ;-th row with j, # j;, and
another nonzero entry A;, j, with i # ¢;. It may be the case that the only way to choose A;, ;, and
A, j, will result in i3 = ¢o. It may also be the case that it is not possible to choose the next nonzero
entry A;, j, with js3 & {j1,j2}. If either of these happen, then we set our sequence of nonzero entries
(which we need for the next step in the algorithm) to be (Ay;,, A;, ji, Ais s> Aisjp). Otherwise,
ia & {i0,71}, and we continue adding pairs of nonzero entries A; _, ., A ;. to our sequence until
we are forced to choose either i, € {ig,41,...,%c_1} O jey1 € {Jj1,---,Jc}. Note that if the latter
happens, the nonzero entry A;_; ., is not added to our sequence. This means that the process will
always terminate when our sequence has even length and is of the form

(A A A A’ig,an e 7Aic—1,jc7 Aic,ja)'

10,91 11,510 “1i1,52

Let 1 be the minimum of the A;;’s appearing in this sequence. Let L be the n x n matrix with the
entry +u in positions (1,71), (i1,72), .., (ic—1, jc), —p in the postions (i1, 1), (i2,72),- -, (ic; Je),
and 0’s elsewhere. Then the row and column sums of L are all 0. Therefore, A — L is a doubly
stochastic matrix, satisfies A;; =0 = (A — L);; = 0, and has fewer nonzero entries than A. By
induction, there exists a permutation matrix P for which (A — L);; =0 = F,; = 0. The result
follows. O

Using this, we observe that the adjacency algebra of any scheme is contained in the image of the
standard permutation representation P : CS,, — M,,(C). This representation of CS,, is faithful on
Sp, and has two irreducible constituents, the trivial representation and the reflection representation
of degree n — 1. It follows that for any scheme (X,S) of order n, CS is a subalgebra of P(CS,,)
that is generated by the images of certain sums of distinct elements of S,,. It also follows that
the integral adjacency ring ZS a subring of a homomorphic image of an integral group ring ZG
generated over Z by the images of certain sums of elements of the finite group G.

One case where such subrings of ZG can be constructed is in the case of a Schur ring.



Definition 2.4. Let G be a finite group of order m. Let F be a partition of the set G with the
property that for all s = {g1,...,9x} € F, s* = {gi"'...,9x '} € F. For each s € F, let
05 = des g, and let ZF be the free abelian subgroup of ZG generated by {os : s € F}. We say
that ZF 1is a generic Schur ring if ZF is a subring of ZG that is free over Z with basis F. In
other words, for all q,r € F, there are (automatically nonnegative) integers ags, s € F, such that
040, = Y Ugrs0s. LF is a unital Schur ring if it is a Schur ring with the property that {1} € F.
seF

If ZF is the unital Schur ring defined by a partition F of a group of order n, then the left regular
representation of G will map each o, for s € F to a (0, 1)-matrix, and it is easy to verify that the
Schur ring ZJF is the adjacency ring for an scheme whose adjacency matrices are the o,’s for s € F.

Actions of groups on finite sets always give rise to unital Schur rings. If G is a group of order
n and a group H acts on GG by automorphisms, let F be the partition of G into distinct H-orbits.
Choose representatives go = e, g1, - . ., gq for the distinct H-orbits, and let o; = > g. Note that if

gegi
any a = > a,g € ZG is fixed by all elements of H, then the coefficients of g must be equal to the
geG
coefficient of g;, for each i € {0,...,d}, so « lies in ZF. Conversely, each o; is fixed by all elements

of H, and so we can conclude that ZF is equal to the fixed-point subalgebra (ZG)*. In particular,
ZJF is a Schur ring.

A common occurrence of a Schur ring occurs in the case of a cyclotomic association scheme.
This is an association scheme whose adjacency matrices are circulant matrices, which are linear
combinations of the powers of a fixed permutation matrix P,. For example, consider the following
list of basic matrices of schemes of order 6 excluding those of the two groups of order 6. The basic
matrices are as follows:

0 1 1 1 1 1] 0 1 2 2 2 2] 0 1 1 2 2 2]
101111 1022 2 2 1012 2 2
110111 2201 2 2 110222
(Sa)111o11’(Sb)221022’(50>222011’
111101 22 220 1 22210 1
111110 222210 222110
0 1 2 3 3 3] 01 2 2 3 3] 0 1 2 2 3 3]
2013 33 103322 1022 3 3
1 20333 230213 3301 2 2
(Sd)333012 <S€>232031 (Sf)331022
333210 32130 2 22 330 1
3331 20 3231 20 2 23310

Here S, is the trivial single-class association scheme of order 6. To view S, as a Schur ring, we
can take 7 = (1,2, 3,4,5,6) and use the partition {{1}, {7, 7% 73,7%,75}}. The others can also be
viewed as Schur rings. For S} we can take T to be a permutation for which 73 = (1,2)(3,4)(5, 6), so
taking 7 = (1, 3,5, 2,4,6) suffices, and the partition can be taken to be {{1}, {73}, {7, 7%, 7%, 7°}}..
For S., we can take 7 = (1,4,2,5,3,6), and use the partition {{1},{7%, 7}, {r,73,7°}}. For Sy, we
can again take 7 = (1,4,2,5,3,6) and refine the previous partition to {{1}, {72}, {7}, {7, 73,75} }.
For S, take 7 = (1,5, 3,2,4,6) and use the partition {{1}, {73}, {7, 7°}, {72, 7'} }. For S}, take 7 =



(1,3,5,2,4,6) and use the partition {{1}, {73}, {7, 7%}, {72, 7°}}. So all of the non-thin association
schemes of order 6 are Schur rings consisting entirely of circulant matrices, and thus these are all
cyclotomic association schemes.

Often a Schur ring can be realized as a subring of ZG for more than one group G. Indeed, S,,
S., and Sy above can also be viewed as Schur subrings of Z.Ss.

The above example also provides insight into another phenomenon that occurs for CC’s and
association schemes that is known as fusion. After suitable changes of bases, each of the above
Schur rings can be viewed as a subring of the same group ring Z(7), which is itself the adjacency
algebra of a thin association scheme. When 7" and S are two association schemes or CC’s of order
n and ZT is a unital subring of ZS, then we say that T"is a fusion of S, and S is a fission of T'.
For association schemes of order 6, the lattice of Schur subrings (fusion subrings) of Z(r) is

Z[Sy) — Z[Sy]
/ \
Z[S,] Z[Se) — Z(r)
\ / /
Z[Sc] - Z[Sd]

Another example of a Schur ring is a double coset algebra. Let H be a proper subgroup of a
finite group G having index n. Let X = G/H :={H = x1H,x2H, ..., x,H} be the set of left cosets
of H in G. Then G acts on the set of pairs of left cosets X x X via g(x;H,z;H) = (9z,H, gx;H).
The orbits of this action of G on X x X are called the 2-orbits for the action of G on X. Each
2-orbit G(xH,yH) can be represented in the form G(H, gH) for some g € G, so for later use we
let g7 := G(H,gH) denote this 2-orbit. It is easy to see that the collection of 2-orbits is in 1-to-
1-correspondence with the collection of double cosets of H in G via the map ¢ — HgH, for all
g € G. We claim that the collection of 2-orbits for the action of G' on X is association scheme on
X x X. To see this, observe that the 2-orbits do indeed partition X x X, that the 2-orbit 17 is the
identity relation on X (since left multiplication by G is a transitive action on the set of left cosets
of H in G), and that the transpose of a 2-orbit is a 2-orbit since

(rH,yH) € g <= Hxz'yH = HgH
< H(z 'y 'H=Hg'H
—  (yH.eH) € (g,

It remains to show the intersection numbers of this scheme are well-defined. Given 2-orbits p'?, ¢,
and r¥, the definition of the corresponding intersection number is

aygn,n = |{(xH,zH) € r¥ : IyH € X, (xH,yH) € p” and (yH,zH) € ¢"}|.

pHq
If (xH,zH) € r" and there exists a yH satisfying (zH,yH) € p" and (yH,zH) € ¢", then
we have that yH C xHpH, and so zH C yHqH C xHpHqH N xHrH. Conversely, for any
zH C xHpHqH NxHrH, we have that (xH,zH) € r¥, and since HpHqH = (HpH)(HqH), there
exists ay € HpH such that (xH,yH) € p" and (yH,2H) € HqH. So for a given x H, the left cosets
zH for which (xH, zH) belongs to the set in question are those contained in tHpHqH NxHrH.
The number of these left cosets is ﬁ|prHqHﬂxHrH\ = ‘—;I']HquHﬂH'r’HL so it only depends
on the choice of the double cosets HpH, HqH, and HrH, as required.
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The scheme of 2-orbits for the action of a group G on the set of left cosets of a proper subgroup

H of G is known as a Schurian, or group case association scheme. It will be denoted by (G/H,G/JH)

or by 2-orb(G, G/H). Its scheme ring over Q is canonically isomorphic to the double coset algebra

enQGey, where ey = ﬁ > h:= ﬁ(]—] 1) is the idempotent corresponding to the trivial character
heH

of the group H. Note that this double coset algebra is an example of a Schur ring, but it will not
be a unital Schur ring unless |H| = 1. If [G : H] = n, the isomorphism from Q[G )/ H] — exQGey
is given by

o — |H|(epgen).
Verification of this point is easily reduced to checking that the intersection numbers of the scheme
agree with the structure constants of the double coset algebra in this basis. For a given p,q,r € G,
we have

(empen)(enqen) = ewpenqen
= ﬁ >, hiphaghs
hi,ho,hseH
1
= TH3 Z Yyor o, nra CHTCH,
HrHEH\G/H
where a, . yow gy = [HpHqH OV HrH| = |H|ayu gn 1. So it follows that scaling each of the

(eggen)’s in the natural basis of the double coset algebra by | H| will produce a basis with the same
structure constants as Q[G J H].

The reader should be aware that the basis elements of a Schur ring do not always correspond
to a Schurian scheme. Over rings of characteristic zero, these correspond to fusion subschemes of
Schurian schemes, which are not always Schurian.

The Schurian property is defined more generally for CC’s using the 2-orbit concept. The collec-
tion of 2-orbits for the action of a finite group G on a finite set X is a CC on the set X, denoted
2-orb(G, X). The fibres of 2-orb(G, X) correspond to the orbits of G on X. So 2-orb(G, X) will be
an association scheme if and only if the action of G on X is transitive (i.e. there is only one orbit).
It will be a half-homogeneous CC if and only if the action of G on X is half-transitive (i.e. every
every orbit of G on X has the same size), and a symmetric association scheme if and only if the
action of G on X is generously transitive (i.e. for every (x,y) € X x X there exists a g € G such
that g(z,y) = (y, z)).

On the other hand, given a CC S defined on a set X of size n, we can define its combinatorial
automorphism group Aut(S) to be the subgroup the group of all permutations ¢ of X for which
(x,y) € s = (¢, 0y) € s, for all s € S.

The functors Aut and 2-orb can be composed. It is fairly easy to see that if G acts on X, then G
will be a subgroup of Aut(2-orb(G, X)). We say that G is a 2-closed permutation group on X when
G = Aut(2-orb(G, X)). S is always a fusion CC of 2-orb(Aut(S), X), because if s € S, the 2-orbit
of (z,y) under the action of Aut(S) will be contained in s, but it may be the case that s contains
more than one 2-orbit of Aut(S)). We say that S is a Schurian CC when S = 2-orb(Aut(S), X).

In order for (X, S) to be a Schurian CC, it is necessary and sufficient that every scheme relation
s € S be a single 2-orbit of Aut(S). So whenever s € S and (z,y), (z,2) € s, then there must be
a ¢ € Aut(S) that fixes x and maps y to z. In other words, (X,S) is a Schurian CC if and only
if for all € X, the stabilizer of z in Aut(S) always acts transitively on {y € X : (z,y) € s}. A
Schurian scheme is a Schurian CC with the additional property that Aut(S) acts transitively on X.
This characterization of Schurian schemes follows from Theorem 6.3.1 in Zieschang’s book Theory
of Association Schemes.
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Theorem 2.5. Let (X,S) be an association scheme, and let G = Aut(S). Let x € X, and let H
be the stabilizer of x in G. Then the following are equivalent:

(a) (X,S) is a Schurian scheme;
(b) G acts transitively on X and, for all s € S, H acts transitively on {y : (z,y) € s};

(¢c) there is a bijection ¢ : X — G/H which induces a combinatorial isomorphism between (X, S)
and the group-case association scheme (G/H,G|/H).

In practical terms, this characterization makes it possible to always check whether or not a given
scheme is Schurian. Starting with .S, one computes the automorphism group of S (which these days
can be done using the nauty software implemented by the grape package available in GAP), then
checks that Aut(S) acts transitively on X, and if it does then one checks that for all x € X, for all
s € S, Stabaus)(x) acts transitively on {y : (z,y) € s}.

Although many small schemes turn out to be Schurian, once the order is beyond 30 there are
usually more non-Schurian schemes than Schurian ones. The smallest non-Schurian scheme is an
association scheme (X, S) of order 15:

— o = R R RNNDNNNDN DO
R R R NNDNDNDRFRE P RPN O -
DO = = =R DNDNNO = =
RF NN R NNRFRRNRNDFRNO - = -
O — =N NNRNNDNO R =
O — NN P F =D O DN N
DN PN FRNDNORFFFN N
S NN NN R NRFRORFRDNRFRRFNDND =
R NP DN R ONRFRDNRDNDF N
— R NN R N ONFNDN R~ RN =N
O — NN O =R = DN DN =N
O = O = RN =N = NN =N
= N0 O N = = RN DN DN = NN
OO = = NN = DN~ — NN
OR NFRF R NNNRFRRFRRFRDNRDNDDN

In this case, Aut(S) is a group of S5 order 21 that has three orbits on X = {1,...,15} (of sizes 7,
7, and 1), so the scheme is not Schurian.

There is a unique non-Schurian scheme of order 16 and rank 3 appearing in the exercises that
has a transitive automorphism group, which is a fusion scheme of a Schurian scheme of rank 4.

EXERCISES:

Exercise 2.1: Symmetric association schemes of rank 3 arise from distance-regular graphs of
valency 2, which are known as strongly reqular graphs. If I' is a strongly regular graph on n vertices
with valency k, show that the characteristic polynomial of A is of the form z% — (A — p)z — (k — p),
where \ and j are the constants given in the equation A% = kI,, + AA + pAs. (For this reason, an
important invariant of a strongly regular graph is its type (n, k, A, u1).

11



Exercise 2.2: Let G be a cyclic group of order 7. Determine all of the Schur subrings of CG.
Exercise 2.3: Let G = S3. Find all of the Schur subrings of Ss.

Exercise 2.4: Let G = S3, and let H = ((1,2)). Find the basis matrix presentation for the
Schurian scheme defined by the ordinary Hecke algebra corresponding to H.

Exercise 2.5: Let G = Ay, and let H = ((1,2,3)). Calculate the basis matrix for the Schurian
scheme defined by the double cosets of H in G.

Exercise 2.6: Suppose H is a normal subgroup of a group G having index n. Show that the
ordinary Hecke algebra ey CGey is isomorphic to C[G/H].

Exercise 2.7: One simple construction of symmetric association schemes from schemes is called
stratification. Given an scheme (X, S) of finite order, the stratification of S is a new set of relations
S on X given by S ={sUs*:s € S}

(a) Show that if S is a commutative association scheme on X, then its stratification S will also
be an association scheme on X.

(b) Show that the group S; defines a non-commutative scheme whose stratification is not an
association scheme.

Exercise 2.8: Let S be a CC. Show that Aut(S) is the precisely the group of all permutations
whose permutation matrices commute with every adjacency matrix in S.

Exercise 2.9: Show that the automorphism group of the scheme of order 16 and rank 3 whose
basic matrix is shown is transitive, but the scheme is still non-Schurian.

DO DN M = NN NN FEDNON ==
N N DN NN NRFRDNDODNDFDND -
NN R NRFEDNNDDNDNFEONRFEDNDDND -
=R NN NN DN NN DN -
N H NN DNFEDNDONDDNDDNDND - =N
F NN RN R ONDNDDNDNRFRDNFEDND
NN == ODN = DNDDNDDNEFEDNDEFEDNDDN
N = = O DN = DN DNDDNDDN = DN DN DN
O DNN R RFR RN FFRFDRKNDNDDNDDNDDND

NN NP BRPRRPRBP == O
NN RPN~ R—= O
NN NN NN - =
= R NN O FEDDNDNDNDND DN
EH NN R DNORF NN FEDNDRFREDNDDND DN
N R O F NN NRFRDNDFDNDDNDDND
N O = NN DN = DN NN DN DN

(Hint: Use GAP. Show that the automorphism group is transitive with order 192, and the
stabilizer of 1 in G has 4 double cosets, not 3, and hence the scheme is not Schurian.)
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3 Characters of schemes

Since the adjacency algebras of coherent configurations are self-adjoint subalgebras of M, (C), it
follows that they are semisimple. Therefore, there is a Wedderburn decomposition

CS= P CSe,

x€Ilrr(S)

where the simple components CSe, are the principal ideals generated by a primitive idempotent
of the center of CS. The number of simple components corresponds to the number of inequivalent
irreducible matrix representations of CS, which are distinguished by their irreducible characters
x- Each simple component CSe, is a simple C-algebra, and hence of the form M, (C), where
ny, = x(I) is the degree of the irreducible character x of S. Since CS has dimension equal to the
rank r of the CC, we automatically have

r= Z ni

x€Irr(S)

The left regular representation of the elements of the CC as left operators on the r-dimensional
space CS affords the regular character p of S, whose irreducible decomposition is

b= Y ma

x€lrr(S)

The most natural matrix representation of an CC is its standard representation, which is the
n-dimensional representation of the elements of the scheme in terms of their adjacency matrices.
(The standard representation and the regular representation correspond only when S is a group.)
This affords the standard character of S, which we denote by . From the basic matrix for S, we
see that for all s € S,

|s|, if sis a fibre of S,
P)/(Us) = {

0, otherwise.

Here |s| denotes the number of elements of s; i.e. the number of 1’s occurring in os.
For each irreducible character x, if m, denotes the multiplicity of x in v, then we have v =

> my X, SO
n = E NN
x€Irr(S)

It is straightforward to obtain a formula for the e,’s in terms of the irreducible character values
{x(os) : x € Irr(S),s € S} and the multiplicities m,. We have that for each s € S, y(os-ey) =
my X (0s+). On the other hand, if e, = ), ¢ c;04 where the ¢; coeflicients all lie in C, then (0, ) =

Y oiay(os0r) = cs|s|. Therefore,
Ex = My Z X<O_S*)Us-

seS |8‘

When S is an scheme, then |s| = ngn, so the formula becomes
my x(os)
ey = — E —0.
n n
seS 5

13



The [Irr(S)| x |S| matrix (x(0s))y,s is known as the character table of S. As with character
tables of groups, it contains quite a lot of algebraic and representation-theoretic information about
the structure of the CC.

There is a basic algorithm for computing the character table of an scheme which is analogous
to well-known algorithms for group character tables, which we will now outline. The theoretical
details of this algorithm will be dealt with later.

Step 1. Find a suitable basis of Z(CS). In the case of an association scheme of rank d + 1,
one can simply use the set of adjacency matrices {os : s € S} themselves. For non-commutative
schemes, one can use a maximal linearly independent subset of collection of “modified class sums”

. 1
Os — E —O0+0g0¢.

n

tes !

as a basis for Z(CS). These modified class sums all have nonnegative integer coefficients in terms
of the oy’s.

Step 2. Let B = {d,} be the basis of Z(CS) obtained in Step 1, with h = dim(Z(CS)) =
|Irr(S)| = |B|. For each element of B, calculate its matrix M, (N) as a left operator on Z(CS) in
terms of the basis B.

Step 3. Find a set of h eigenvectors common to all of the matrices , for b € B. These must
exist, because there are coefficients p, , (eigenvalues) and gy, (dual eigenvalues) for which

0/?) = Zﬁb,xex and €x = Z (jx,b@a
X b
for all b € B and x € Irr(S). This implies that

They = DbyCy,

and so the e,’s will be eigenvectors common to all of the 7,’s. Furthermore, the entries of e, will
be the coefficients ¢y, for b € B up to multiplication by a scalar, which is uniquely determined by
normalizing in order to arrange that e, is an idempotent when it is represented in CS. We can also
find m, at this point, since the image of e, in its standard representation as an n x n matrix will
be similar to a diagonal (0, 1)-matrix with precisely m,n, 1’s on its diagonal.

Step 4. Determine the character table of the scheme from the e,’s and the m,’s. Solving for
the eigenvalues in Step 3 produces the dual eigenvalues ¢, ;. We have computed the nonnegative
integers ¢, s for b € B, s € S for which 6, = ) ¢, 505 in Step 2, so we have

s
Ex = E ij,b E CpsOs = § ( E ij,bcb,s)as-
b s s b

Now we can simply compare this to the formula

. :%ZX(%*)U
: n ses s |

to determine the values of the x(oy)’s.
We will illustrate this algorithm with two examples:
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Example 3.1. Let CS be the algebra with basis S = {1, 0,, 0,} with multiplication given by

oy = (57)1+ 0y,
0,0, = 040, = (56)0,+ (56)0,, and
02 = (3192)1 + (3136)0, + (3135)0,.

q

Then CS is commutative. The 3 x 3 matrices corresponding to o, and o, are:

0 57 0 0 0 3192
o,= |1 0 56| ando,= [0 56 3136
0 1 56 1 56 3135

The common eigenvectors for [o,] and [o,] are:

7T -1 -8 1
=111 e =[1,—=, =", and e3 = [1,—, —]|"
€1 [ y Ly ] » €2 [ 7577399] , and €s [ ’ 577456] ’
which satisfy
Oop€1 = 5761, Op€a = 762, Op€3s = —863,
0461 = 319261, O04€2 = —882, 04€3 = 763.

Since (140, +04)? = 3250(1+ 0,4 04), we have that e,, = 5= (1+0,40,). Since ((399)1+ 490, —
0g)? = 750((399)1 + 490, — 0,), €y, = =5((399)1 + 490, — 0,). Finally, ((456)1 — 640, + 04)* =
975((456)1 — 640, + 0,), we have ey, = 51=((456)1 — 640, + 0 ). Since CS is commutative, we
know that each of the n,’s has to be 1, so since % = % and % = %, we can conclude that
My, = 1729 and m,, = 1520. Comparing with the other formula for the e,’s allows us to complete
@)(xz(ap)) _ 49

32507\ n, 750

the character table for CS. For example, (
and we leave the others to the reader.

and n, = 57 implies that y»(0,) =7,

‘ 1 o, o4 ‘ My
x1|1 57 31921
x2 |1 7 =8 | 1729
xs|1l —8 7 1520

It is no accident that the character values are closely related to the eigenvalues for association
schemes. Indeed, if X is the representation affording the character y, then applying this to the
equation 0, = ) psyey gives X(0;) = PsyIn,, and taking traces we get x(0,) = psyny. When CS

S
is commutative, every n, will be 1 and we can choose ¢, = o, for each s € S.

Remark 3.2. Though the parameters used in the above example may seem unnecessarily large
for an introductory example, they become a bit more interesting when one takes in to account the
fact that the existence of a 2-class association scheme of order 3250 with these structure constants
would correspond to an extreme case of a strongly regular graph with valency k& and diameter d for
which the vertex/valency bound

QL

n<1l+k-+k( y (k—1))

=1
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holds with equality. Such graphs are called Moore graphs. If £ > 3, then eigenvalue considerations
imply that the diameter must be 2 and k € {3,7,57}. The case k = 3 corresponds to the Petersen
graph, and the case k = 7 to the Hoffman-Singleton graph. But a Moore graph with valency 57 is
not yet known to exist! (All that is known about it is that if it does not exist, it corresponds to a
nonschurian 2-class association scheme.) So what we have really computed is the character table of
a table algebra which may or may not be realizable as an association scheme.

Example 3.3. Let S be the scheme of order 12 with basic matrix

]

~

Q

I
OO =~ UTO WO
O =1 =TT U RN WO
S NNNe Nl NIES IR S e B SR )
S NN Nlfo NIES BEN [ == I = LR
RO T Ul ~J ~1 — O O O
WU~ ~J1O — OO e
B WD R O OO~ =] Ut W
B WO = OO =1 -1 Ul
TR O WNUCTU R RO
T O R, NWUDU OO
O OO W U~
— OO R N W T Ot =] ~]

(@)
Ut
Ut
w
[\]
S
-3
—_
(@]

Since o304 = 07 and 0403 = 0%, S is not commutative. The modified class sums are:

o, = 8o,+4o, o, = 0,+0,
o, = 4o,+ 80, o, = 0,+0,
o, = 4o,+20,+20, 0, = 6o,+ 60,
o, = 4o,+20,+20, 0, = 0,

so B={¢6,,0,,0,,0,,0,} is a basis for Z(CS). The matrices for the elements of B as left operators
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on Z(CS) in terms of the basis B are:

Q>

Q>

Q>

The five common eigenvectors to each of these matrices turn out to be: e; = (1 ,1
—1,1,0)7, and e5 = (1,1, —

(17 _17 ]-7

_]-7 O)T7 €3 = (]-7 17 07 07 -
the five primitive idempotents of Z(CS) are:

o O O

O O O =

o k0o
o kOO
—_

S ococoo

O 0 = O O
O = 0 O O
o O OO

—_
[\

1)T7 €4 = (17

_17

Q>

Q>

O = 0 O O

O 00 = O O

O 0 = O O

O = 0 O O

= O O O =

= O O O =

= O O = O

= O O = O

€1 = ﬁ(o'o + 61 + 3&2 + 363 + 266)
= plog+o,+o,+0,+0,+0,+0,+0,)
€x2 T %(5’0 _&1 +5—2 _5-3)
= E(U _01+0_2_0_3)
€X3 = 32%(&0 + 01 6-6)
- 5(200 + 20-1 Og U?)
€xs — é(oﬁo — 0, 0, + 5-3)
= E(JO -0y 02+J3)
Cys = 1}14(0 +0, — 36, — 30, + 205,)
= 112(0 +o0,—0,—0,—0,—0,+0,+0,).
Therefore, the character table of S is:
O-O 0-1 0-2 0-3 0-4 0-5 UG 07 mX
xi1| 1 1 1 1 2 2 2 2 |1
xs| 1 1 -1 -1 -2 =2 2 2 |1
x2|1 -1 1 =1 0 0O 0 0|3
xa| 1 -1 -1 1 0 0O 0 0|3
X3| 2 2 0O 0 O 0 -2 —-2|2

17

7

3,3
-3,2

)

"

2)"

9 €y =
and so



What makes this an interesting example is that the number of character values is less than the
number of collections of scheme relations that can take different character values. So the rule for
groups that the number of character values equals the number of conjugacy classes does not hold for
schemes. Another rule for groups that fails for schemes is that the irreducible character degrees of
a scheme do not have to divide the order of the scheme. An example will be given in the exercises.

Remark 3.4. Much more is known about the eigenvalues and the dual eigenvalues in the case of
commutative association schemes. If we let P = (P )b, and @ = (¢y.p)x.p, then

Oy = Y Doyt
X
= Zﬁb,x<2‘jx,0‘70)
X c
= Z(Zﬁb,qu,c)o/'\ca
X

C

so it follows that ﬁ)@ =1.
If S is a commutative scheme and we take B = .S, then

€x ©0b = 4x,b0b

for all b € B, so the o’s are eigenvectors common to the e,’s under the pointwise product whose
corresponding eigenvalues are the ¢, ;’s and whose entries are the py,’s. Hence the name “dual
eigenvalues”!

(Dual eigenvalues of commutative schemes are usually defined to be the complex numbers g,
for which e, = < quwas. SO OUT Gys = =qy,s-)

sE

Remark 3.5. The central primitive idempotents of a CC will always be represented as positive
semidefinite Hermitian matrices in their standard representation. To see this, first note that since
CS is closed under the conjugate transpose *, A* will lie in Z(CS) whenever A € Z(CS). Therefore,
there are constants ¢, € C such that (e, )* = > cpey, and in particular (e,)*e, = cye,. Since (e, )*

P
must be one of the primitive idempotents of Z(CS), it suffices to show that ¢, # 0. Taking the
trace of both sides of the previous equation results in

X x (o) Ix(o
Z Is t] 7o) =m Z ISI2

The latter is greater than 0 because the value of an irreducible character of S on the identity matrix
will always be positive.

Remark 3.6. The dual eigenvalues and eigenvalues of a CC are intimately connected by means of
the natural Hermitian form on CS that is given by

A B = 24r(AB) = Lsum(4oBY),
n n

for all A, B € CS, where sum(A) is simply the sum of all of the entries of the n x n matrix A. This
form has the properties:
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(a) for all A, B, and C € CS, [AC, B] = [A, BC*| where * denotes the conjugate transpose, and

ng, if s=t,
0, otherwise.

(b) for all s,t € S, [0s,0] = {
When S is a commutative scheme, we have that for all s € S and x € Irr(95),

tr(osey) = tr((Zﬁs,wew)ex) = Psptr(ey) = Psymy,
P

while at the same time

tr(osey) = sum(og o ei) = sum(os o (Z Gr101)) = Gy s5um(os) = Gy snsn.
t
The latter can written in matrix form. Let M and A be the diagonal matricies M = diag(m,),

and A = diag(ns). Then the latter identity can be written as nQA = MP*. Combining this with
the identity P(Q = I results in the orthogonality relation

PMP* = nA.

Remark 3.7. The structure constants of a commutative association scheme are determined by its
eigenvalues. Let S be a commutative scheme, and let r, s,t € S. Since o, 0 (050;) = ag,0,, we have
that

tr(op(op0s)) = sum(oy o (0p04)T) = sum(o, o (0501)) = agrnen,

and at the same time

tT(O’T(Jt*O'S*)) = t?"(Z ﬁr,xﬁt,xﬁs,xex) = Zﬁr,xﬁs,xﬁt,xmx-
X X

Remark 3.8. The most difficult part of the algorithm for computing character tables for CC’s
is the calculation of a common set of eigenvectors for the ,’s. The algorithms used by modern
computer algebra systems are reasonably efficient as long as the character values of the CC lie in a
cyclotomic extension of Q. For schemes, however, it is unknown whether or not the character values
will always lie in a cyclotomic extension of the rationals. For association schemes, this is a conjecture
due to Norton that appears as Question (2), Section I1.7 in the book Algebraic Combinatorics I:
Association Schemes by Bannai and Ito.

Remark 3.9. If R is an integral domain, the scheme ring RS will be semisimple as long as char(R)
does not divide the order of S nor any of the valencies n, for s € S. To see this fact, let a« € J(RS),
the Jacobson radical of RS, and write & = ) a,0,. Let {0} =V Cc V3 C --- C V,, = RX be a
composition series for the standard RS-module RX. Since o € J(RS), we have Vo, C V;_; for
1 =1,...,m, and so the matrix representing s« in the standard representation will be similar to
a strictly upper triangular matrix for every s € S. Taking the traces of these matrices gives us the
equations aynng, = 0, s € S. So if the characteristic of R does not divide the order of S, then the
only elements s € S for which a, can be nonzero are those for which the characteristic of R divides
Ng.
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EXERCISES.

Exercise 3.1. Use Remark 3.4 and 3,6 to find a formula for the structure constants of a commu-
tative association scheme in terms of the dual eigenvalues of the scheme.

Exercise 3.2. The Krein parameters of a commutative association scheme S are the constants
{Kyex 1 ¥, 0, x € Irr(S)} defined by

1
€y O €p = E Z Rappx €x -
X

(As we will show later, these are nonnegative real numbers. However, they are not defined in general
for non-commutative schemes, as e, o e, need not lie in Z(CS).)

Find a formula for the Krein parameters of a commutative scheme S in terms of the dual
eigenvalues of S.

(Hint: Follow the dual procedure to that of Remark 3.7, starting with (e, o ey)e,.)

Exercise 3.3. Find a formula for the Krein parameters of S in terms of the eigenvalues of S. Use
this to conclude that the Krein parameters are algebraic over Q.

Exercise 3.4. Let x, ¢ € Irr(9S).
(a) Show that e, ® ey, is a positive semidefinite Hermitian matrix.
(b) Show that e, o ey is a principal submatrix of the n? X n? matrix e, ® e,.

(c) Show that the Krein parameters of a commutative association scheme are nonnegative real
numbers.

Exercise 3.5. Let S = {09 = 1,01,...,04} be the symmetric association scheme of order 28 whose
multiplication is given by

0? = 309+ 09, 0903 = 209+ 20,
0109 = 201+ 04, 0904 = 401+ 209 + 403+ 20 +4
0103 = 03+ 0y, 02 = 60¢+ 201+ 203+ 04
0104 = 209+ 203+ 04, 0304 = 401+ 409+ 203+ 20,4

a% = 0609 + 09 + 403 + 204, O'i = 120¢ + 401 + 403 + 403 + 604.

(a) Calculate the character table of S.

(b) Show that some of the Krein parameters of S are irrational. (Some also have denominator 9,
hence these are not algebraic integers over Z.)

Exercise 3.6. Let S be a commutative association scheme of order n having d classes. The Frame
number of S is
[1 ns

_ es
FS:nd 1 S

[T m
x€lrr(S)
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det P

(a) Show that if P is the matrix of eigenvalues of S, then <€~ is an algebraic integer.

(Hint: Since every eigenvalue of S is an algebraic integer, det P is an algebraic integer. Since
one of the e, ’s is %J, we have

1 1
= > o= - > O bewlew,
P s

seS

S0 Y Psy = n for ¢» = x and is 0 otherwise. Use this to perform a column operation on P
ses

det P
n

and express as a determinant of a submatrix of P.)

(b) Show that the Frame number of a commutative association scheme is a rational integer.

(Hint: Take the determinant of both sides of the orthogonality relation and apply the previous
exercise.)

Exercise 3.7. Calculate the character table of the scheme of order 15 whose basic matrix is shown.
What do you notice about the degrees of its irreducible characters?

01 23333444450575°5
2014444555533 3 3
1205555333 34444
3450345 13452345
345305445 1365432
34545035 4313254

d 3455430315445 2 3

Zzalz 4532453045314 5 3

=0 453354240350531 4
453423553043%5 41
4535324354041 35
5341534253405 3 4
5343415435250 4 3
53 4435152433405
| 53451433425435 0]

Exercise 3.8. In this exercise, we outline a proof for the fact that Z(CS) is equal to spanc({7; :
s € S}) for any scheme S.

(a) Let M be a CS-module. Let (y : Endc(M) — Endc(M) be the vector space homomorphism
defined by

1
Cu(a) = Z mas*aas,
ses

for all & € Endc(M). (Here the multiplication is composition and we think of o, as a linear
operator on CS.) Show that for all & € Endc(M), (p(a) € Endcs(M); ie. for all oy € S,
for all m € M,

Cu(@)(oim) = a(Cu (@) (m)).
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(b) Use the fact that Endcgs(CS) = Z(CS) and the map (cg to show that g, lies in Z(CS) for
every b € S.

(c) Let S = {so,1,...,84-1}, and let ¢ € Endc(CS) be given by ¢(os,) = dp,0s,. Show that
CCS(¢) = Osp-

(d) Let M, be an irreducible CS-module affording x € Irr(S). Viewing M, as a submodule of
CS, there is a module homomorphism p : CS — M, whose kernel is a complement to M, in
CS. Show that for all m € M, (u, (nop)(m) = m.

(e) Identify CSe, with Endc(M,). By the previous part there is an o € CSe, for which
Cur, (@) (m) = m, for all m € M. Use this to conclude that (y (o) = ey

(f) Show that Z(CS) is contained in the span of the 7;,’s.
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4 Subschemes and Quotient Schemes

In this section we will start to lay the basis for a theory of schemes that parallels the theory of groups
as closely as possible. We will begin develop a theory for schemes that includes analogs of subgroups,
quotient groups, group homomorphisms, and important results concerning these concepts in group
theory.

If (X,S) is a CC, the complex product on S is defined to be st = {u € S : ag, > 0}, for all
s,t € S. In other words, st is the support of o,04; i.e. those u € S for which o, appears with

nonzero coefficient in the product os0; = > ag0,. We can also think of the elements of st as
u€es
being those u € S containing points in the composition of the relations s and ¢:

u € st <= there exists an (z,y) € s and (y, z) € t such that (z,2) € w.

If P and () are subsets of S, then their complex product is
PQ={JJra
peP qeQ

and
P*={p*:pe P}.

For any subset R of S, we can define its order by summing the valency map on R; i.e. ng = ) n,.
reR
Note that ng = > ns = n, the order of the CC.
ses

Definition 4.1. Let (X,S5) be an scheme. A nonempty subset T of S is a closed subset of S if
™T CT.

Every scheme (X, S) automatically contains the trivial closed subset {1x} and the closed subset
S itself. Several properties of closed subsets of schemes are immediate.

Proposition 4.2. Let T' be a closed subset of an scheme (X, S). Then
(a) 1x €T,
(b)teT = t"eT;
(¢) TT CT; and

(d) for allp,q € T, 0,0, = ) apgt0y.
teT

In particular, CT is a subalgebra of CS under both ordinary and pointwise multiplication.

Proof. (i) If t € T, then [oy+0y, I] = ny implies that 1x € T*T C T.
(i) Since 1x € T, {t*'} =t*1x CT*T C T.
(iii) It follows from (ii) that T'=T*, so TT C T by definition.

(iv) We have o,0, = > apys05 for all p,q € S. If T is a closed subset of S and p,q € T, then
ses
pq C T, so the only s’s in S for which the a,,s’s may be nonzero in this sum have to liein 7. [
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When T is a closed subset of an scheme S, it follows from the above proposition that CT' is
a table subalgebra of CS. The next proposition shows that this table algebra is realized as the
adjacency algebra of an scheme, so closed subsets of schemes really are sub-schemes.

We will abuse the notation and say that a point (z,y) € X x X belongs to a subset R of S if
there is a relation r € R for which (x,y) € R, and conveniently write this as (z,y) € R.

Proposition 4.3. Let T be a closed subset of an scheme (X, S). Fiz an x € X, and define
Y= {y€X:(ay) €T}

and for each s € S, set
sy =sNY xY.

(Note that sy will be empty unless s € T'.)

Let Ty = {ty : t € T}. Then (Y,Ty) is an scheme of order np = Y ny.
teT

Proof. First, we claim that Ty is a partition of Y x Y. Suppose (y,z) € Y x Y. Then we have
that (z,y) € T and (z,2) € T, so (y,z) € T*T C T. Therefore, there is a unique ¢ € T for which
(y,2) € t, and thus a unique ty € Ty such that (y,z) € Ty. Hence Ty is a partition of ¥ x Y.

It is easy to see that 1y € Ty, and that (ty)* = (t*)y, forall t € T'.

We have already shown above that the structure constants for C7T' are well-defined, and these
will automatically be the intersection numbers (Y, 7Ty ), so we have shown that this is an scheme.

The order of (Y, Ty ) is |Y| =y € X : (z,y) €e T} = > . O
teT
When T is a closed subset of an scheme S, we can talk about the left cosets of T"in .S as being

the complex products sT" := {s}T = J,cr st, and, in a similar fashion, the right cosets T's and the
double cosets T'sT'.

Proposition 4.4. The collection of left cosets (right cosets, or double cosets, respectively) of T in
S is a partition of S.

Proof. Let p,q € S for which p € ¢I'. Then pT C ¢T, so it suffices to show that ¢ € pT'. Since
p € ¢T, there exists a t € T for which ay, > 1. Therefore, [0,0¢,0,] = agpn, > 0. But then
04, 0p01] > 0, so we also have ay+, > 0, and so ¢ € pT'. This shows that the set of left cosets is
a partition of S. Similarly, the right cosets will be a partition of S, and the double cosets will be
unions of left cosets of S, and thus be a coarser partition than that of the left cosets. n

Example 4.5. The thin radical of an scheme S is Oy(S) = {s € S : ny = 1}. Since the thin
radical consists of those elements of S whose adjacency matrices are permutation matrices, and the
product of two permutation matrices is another permutation matrix, it is automatic that the thin
radical of S is a closed subset of S. In fact, Oy(.S) is a group under ordinary multiplication.

Example 4.6. If P and () are closed subsets of an scheme S, then it is easy to see that P N Q will
be a closed subset of S. Other group-theoretic analogs such as center, centralizer, and normalizer
can be defined, but these may not produce closed subsets.
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Example 4.7. Let T be a closed subset of A scheme S. The strong normalizer of T is
Kg(T)={seS:sTsCT}.

The strong normalizer of a closed subset T" of A scheme S of finite order is a closed subset of 5,
since p,q € Kg(T) implies that (pq)*Tpq = ¢*p*Tpq C ¢*Tq C T. If Kg(T) = S, then T is said to
be a strongly normal closed subset of S.

When T is strongly normal in S, it follows that for all s € S, T's = sT and nyr = ny. To see
this, suppose that (z,y) € T's. Then there exists a z € X for which (x,z) € T and (z,y) € s. Let
w € X be such that (z,w) € s. Then

(w,z) € s = (w,2) €T = (w,y) € s"Ts CT,

and so (z,y) € sT, and we can conclude that T's = sT.

Furthermore, for any fixed z € X there are exactly nyp choices y1,...,yn, € X for which
(z,y;) € T. For the same z, there will be ny choices of z; € X with (z,2;) € s*. For each of these
z;’s, there will be nr, choices of wj; € X so that (z;,w;;) € T's. When s € Kg(T), each of the pairs
(x,w;;) must lie among the (x,y;)’s because T = s*T's. Therefore, there are at most ny choices for
the wj;’s, so nys < np. On the other hand, each (v,z) € s produces a (v,y;) € sT = T's, and there
are np of these, so we must have ny < np,.

Example 4.8. When S is A scheme and Y is a character of CS, then the kernel of x is
kery = {s € S : x(05) = nsny}.

The kernel consists of the elements of S whose adjacency matrices are mapped to n, times the
identity matrix by an irreducible representation affording y. For instance, every element of S lies
in the kernel of the characer afforded by the valency representation. The kernel of a character is
always a closed subset of S. To see this, let X be a representation affording the character y, and
suppose p, q € ker xy. Then

X(0p04) = tr(X(0,) X (04)) = tr(nyngl) = npngn, = Z (pgsTlsThy;
seS

and
x(op0q) = X(Z pgsTs) = Z Apgs X ().
seS seS

Since the a,,s’s are all nonnegative, we are done if we can show that x(os) < ngn, for all s € S,
for then it will follow that x(c;s) = nsn, for every s € pgq, and so ker x will be a closed subset of
S. Note that o, is a nonnegative irreducible matrix, so by the Perron-Frobenius theorem it has
a unique eigenvalue of largest modulus whose corresponding eigenvector is the unique one whose
entries are all nonnegative. For oy, this eigenvalue is precisely n, and the eigenvector is the all 1’s
vector. Since x (o) is a sum of n, distinct eigenvalues of o5, we can conclude that |x(o,)| < nsny,
and that equality holds precisely when x(o5) = ngn,.

Unlike the kernel of the character of a finite group, the kernel of a character of A scheme is not
always normal; i.e. the left cosets s(ker x) and right cosets (ker x)s need not agree for every s € S.
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When T'is a closed subset of A scheme S, then its adjacency algebra CT embeds as a semisimple
subalgebra of the semisimple algebra CS. In this situation, Frobenius reciprocity always applies,
which says that if V' is a CS-module and W is a CT-module, then

Homcg(V, indg*;(W)) &~ HomCT(res%g(V), w).

(See Curtis and Reiner, Methods of Representation Theory, Volume I.) In terms of characters, this
says that if x € Irr(S) and ¢» € Irr(T), then the multiplicity of y in the induced character 1 is
the same as the multiplicity of ¢ in the restricted character x.

Definition 4.9. Let (X, S) be A scheme of finite order n, and let T be a closed subset of S. Define

2T = {y:(z,y) € T} for each x € X,
X/T = {aT:z€ X},

st = {(2T,yT) € X)T x X/T : (x,y) € TsT}, and
S)T = {s':s5€8S}.

Theorem 4.10. Let (X,S) be A scheme of finite order n, and let T be a closed subset of S. Then
(a) {xT :x € X} is a partition of X for which each class in the partition has size nr;
(b) S)T is a partition of X/T x X/T; and
(¢) (X/T,S)T) 1s A scheme of order ;.

Proof. (i) Suppose z,y € X for which 2T NyT # 0. If z € 2T NyT, then (z,2),(y,2) € T, so
(x,y) € TT* = T. Therefore, y € =T, which implies that y7" C zT. Similarly, 27 C yT, so we
can conclude that 7" = yT'. Therefore, {7 : x € X} is a partition of X. All of the sets in this
partition have size ny since ny = [{y € X : (z,y) € T}| = |27, for any fixed x € X.

(i) Let p,q € S for which pT Nn¢? # 0. If (2T, yT) € p* N¢*, then (z,y) € TpT NTqT. Let s
be the unique relation in S for which (z,y) € s. Then s € TpT' N TqT. Since the double cosets of
T in S are a partition of S, we conclude that TpT = T'qT. But then p” = ¢7 since these sets are
defined to contain exactly the same elements of X /T x X/T, so the result follows.

(iii) We have that S/T is a partition of X/T x X/T. 1x7 = {(2T,2T) : 2 € X} = (1x)7, so
lyr € SJT. If s € S, then (s)* = {(yT,2T) : (z,y) € TsT} = {(yT,2T) : (y,z) € T*s*T* =
T(s)T} = (s*)T, so (sT)* € SJT. We now need to show that the intersection numbers of ST are
well-defined. Let p,q,r € S and (2T, 2T) € r*. Let u € TrT with (z,z) € u. We have that

{yT € X/T : (2T, yT) € p*, (yT, 2T) € ¢'}| = %HyeX:(%y) € TpT, (y,2) € TqT'}|
- nr Z Z Aty -

s€TpT teTqT

This will be an integer since the first expression is an integer for fixed u € TrT'. If we replace (z, 2)
by (2/, 2') where (2', x), (z,2") € T, then we will be counting the same collection of y’s in X because
(x,y) € TpT <— (2',y) € TpT and (y,z) € TqT <= (y,7') € TqT. Therefore, this number
does not depend on the initial choice of (z,z) € TrT. Therefore, the intersection number a,r, r,r
is well-defined. This completes the proof that (X/T',S/T) is A scheme of order ;. O
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Remark 4.11. Suppose T is a strongly normal closed subset of A scheme S. Then every double
coset T'sT for s € S will be equal to sT, and ngr = ny. From the proof that ST is A scheme, we
can see that the valency of the element p’ is in general equal to

_ L
nyr = - z z Qst1
seTpT teTp*T

= nL z nS

T seTpT
nrpT

np
Therefore, if T' is strongly normal in S, then every element of S//T has valency 1. So the quotient
scheme of S modulo a strongly normal closed subset will always be a thin scheme. The converse

also holds, that is, if the quotient scheme ST is thin, then T is strongly normal in S.

Remark 4.12. If T is a closed subset of a scheme S, then we will see in the exercises that e =

% > o4 is an idempotent of CS. As in the construction of the double coset algebra, the algebra
teT
erCSer with unit element er will be isomorphic to the adjacency algebra of the quotient scheme

C[S/T]. It makes sense, therefore, to ask if the irreducible characters of S//T" can be determined
from the irreducible characters of S. The answer is given in Hanaki and Hirasaka’s paper Theory
of Hecke algebras to association schemes, SUT Journal of Mathematics, Vol. 38, No. 1, (2002),
61-66. Whenever x is an irreducible character of S for which e = e, er # 0, eCSe will be a simple
component of erCSer, and all of the simple components of e;CSer can be obtained in this way.
So every irreducible character of S//T is obtained by restricting a unique x € Irr(CS) to erCSer.
Furthermore, if ¢ € Irr(C[S/T1) is the restriction of x € Irr(CS), then it turns out that m, = m,.
To see this, let I's be the standard character of S. Since I's(er) = %FS(USO) = 25 — ngyp, and

nr
Ls(eroser) = 0 when s € T, the restriction of I's to epCSer agrees with the standard character of

S//T. Working out both sides of the equality

Is(exer) = syr(exer)

gives us
mxX(exeT) = mga(:p(exeT)7

SO My, = My, as claimed.

EXERCISES.
Exercise 4.1. Let T and U be closed subsets of a scheme S.

(a) Show that the set of T-U-double cosets {T'sU : s € S} is a partition of S.

(b) Show that if U C Kg(T), then TU is a closed subset of S.

Exercise 4.2. Show that the thin radical Oy(S) of a scheme S is equal to the strong normalizer
Ks({1x}) of the trivial closed subset.

Exercise 4.3. For any subset R of a scheme S, define e = % > o
res
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(a) Show that T is a closed subset of S <= e is an idempotent of CS.

(b) Show that T" is a normal closed subset of S <= e is a central idempotent of CS.

Exercise 4.4. Let S be the scheme of order 12 from Chapter 3 whose character table is

o, o0, 0, 0O, 0O, 05 05 0, |my
i1l 1 1 1 2 2 2 21
5|1 1 -1 -1 -2 -2 2 2|1
Yo|1 -1 1 =1 0 0 0 0|3
a1 =1 =1 1 0 0 0 03
3|2 2 0 0 0 0 -2 —2]|2

(a) Determine the kernels of all the irreducible characters of S.

(b) Determine whether or not each of the kernels is a normal closed subset of S. (You can find
the basic matrix of S in Chapter 3.)

(c) Are all of the normal closed subsets of S strongly normal?

Exercise 4.5. Determine whether or not every closed subset of a commutative association scheme
is normal. If so, are they also strongly normal?

Exercise 4.6. Show that if 7" is a closed subset of a scheme S for which S/T is thin, then T is
strongly normal in S.

Exercise 4.7. Let S be a scheme of finite order.

(a) Show that the intersection of two strongly normal closed subsets of S is strongly normal.

(b) Let O?(S) be the intersection of all strongly normal closed subsets of S. Show that 0Y(S) is
a strongly normal closed subset of S. (This is known as the thin residue of S.)

Exercise 4.8. Suppose that T is a strongly normal closed subset of a scheme S, and let R be an
integral domain.

(a) Show that
RS= @ R(TsT)
sTes)r
is an S)/T-graded R-algebra; i.e. R(TpT)R(TqT) C R(TrT) whenever p'q" = rT in the
group S)/T.
(b) Show that, if s € T', then it is not necessary for the s”-component R(T'sT) in the grading to
contain a unit of RS.

(Hint: It is possible for the adjacency matrices of every element in T'sT" to have two identical
rows.)

Exercise 4.9. Suppose ¢ is an irreducible character of a Schurian scheme S, and let G be the
combinatorial automorphism group of S. Prove that the degree of ¢ divides |G]|.
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5 Homomorphisms of schemes

Definition 5.1. Let (X, S) and (X, S) be schemes. An scheme homomorphism from (X, S) to
(X,S) is a pair ¢ = (¢x, ds) of functions ¢x : X — X and ¢pg: S — S satisfying

(a) (x,y) € s = (x¢,yP) € s¢, for all s € S, and
(b) for allw,z € X and s € S, (we, z¢9) € sp = I(x,y) € s such that (xp,yp) = (we, zp).

Proposition 5.2. Suppose ¢ : (X,S) — (X, S) is a scheme homomorphism. Then the following
hold:

(a) (pq)p C ppqe, for all p,q € S;

(b) (s)p = (s¢)*, for all s € S;

(c) (Ix)o =1g;

(d) if T is a closed subset of S, then T~ is a closed subset of S.

(e) if opx is surjective, then ¢g is also surjective; and

(f) if ¢x is surjective, and b (X,5) — ()%, 5’) is a scheme homomorphism of schemes, then the
composition ¢¢ is a scheme homomorphism.

Proof. (i) If § € (pq)¢, then § = s¢ for some s € pq. If (z,y) € s, then (z¢,y¢p) € s¢, and there
exists a z € X such that (z,2) € p and (z,y) € q. Therefore, (z¢,z9) € pp and (z¢,yd) € qop, so
(29, yp) € pdqg and thus s¢ € poqg.

(i) If (z,y) € s, then (yo, xd) € (") N (59)", so (s*)¢ = (s5¢)".

(iii) If x € X, then (z¢, x¢) € (1x)¢p N 1. Since S is a scheme, this implies (1x)¢ = 1.

(iv) If po, qp € T, then (pg)(qp) C T. By (i), it follows that (pq)p C T, as required.

(v) Suppose ¢x is surjective. Let § € S, and suppose that (Z,7) € 5. There exists an (z,7) €
x X such that (z¢,y¢) = (Z,y). If s is the unique element of S for which (z,y) € s, then
(Z,7) = (x¢,yo) € s¢, so we must have that s¢ = §.

(vi) The composition (qﬁq;) x is well-defined since ¢x is surjective, and by (v), the composition
(qﬁé) s will be well-defined because ¢g is surjective. For all s € S, we have that (z,y) € s —
(20, yd) € s¢p = (20, ydd) € s¢¢. If (xdd, ydd) € spo, then there exists a (Z, ) € s¢ such that
(20, 70) = (xdd, ypd). Since ¢ is a homomorphism and ¢y is surjective, there exists a (u,v) € s
such that (u¢,v¢) = (%, 7). Therefore, there exists a (u,v) € s such that (upd, vpd) = (£, ydo),
which shows that d)(;; is a scheme homomorphism. O

Definition 5.3. Let ¢ : (X,5) — (X, 5) be a scheme homomorphism. The kernel of ¢ is the closed
subset 91 (15) of S, which we will denote by ker ¢.

Let T be a closed subset of a scheme (X,S). Then the map (X,S) — (X/T,S)T) given by
x +— 2T and s — sT, for all x € X and s € S is a surjective scheme homomorphism with kernel
equal to T'. To see this, first note that

(z,y) € s = (v,y) € TsT = (2T,yT) € s".
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For the second property of scheme homomorphisms, we have that if (z7,yT) € sT, then (z,y) €
T'sT', so there exists an (a,b) € s for which (z,a) € T and (b,y) € T. Hence 2T = aT and yT = b7,
so (T,yT) = (aT,bT) in X/T. Thus the map is a scheme homomorphism. It is clearly surjective.
Finally, the kernel is 7' because s = 1y implies that for all (27, Ty) € s* = 1y = 1x7,
we have (z,y) € T(1x)T =T, so s € T. We will refer to this homomorphism as the canonical
homomorphism associated with the closed subset T', and denote it by mod T'.

Theorem 5.4. (First Isomorphism Theorem for schemes) Let ¢ : (X,S) — (X,S) be a scheme
homomorphism with kernel T'. Then

(a) for all z,y € X, ¢ =yp <— 2T =yT};

(b) forallp.q € S, p" =q" = po = q¢;
(¢c) ¢ is injective <= ker¢ = {1x}; and

(d) the map ¢ : (X/T,S)T) — (X, S) given by (xT)p = x¢, (s")d = s¢, for allz € X and s € S
18 an injective scheme homomorphism.

Proof. (i) Let z,y € X satisfying T = yT. Then 2T = yT = (x,y) € T = (v¢,y¢) € Tp =
1X’7 SO ZL’QZ5 = ygb

If z,y € X for which z¢ = y¢, then (z¢,yp) € 1x,. So if s is the element of S for which
(x,y) € s, then we would have s € ker¢ =T, so T = yT.

(i) Let p,q € S for which p” = ¢”. Then for all (z,y) € p, then (2T, yT) € p" = q*, so (z,y) €
TqT. This implies that there exists (a,b) € ¢ such that (x,a), (b,y) € T. Therefore, (z¢,yo) € po,
(v6,a0) € T = 15, (a6, bd) € qb, and (b6, yd) € T = 15. Thus (z6,y6) = (a6, bs) = g also,
and we have that p¢ = q¢.

(iii) If ¢ is injective, then ¢g is injective, so we have that for all s € S, s¢p =13 = s = 1y,
so ker¢ = {1x}. Conversely, suppose ker¢p = {1x}. If z¢ = y¢ and s € S with (z,y) € s, then
(xp,yp) € sp = 1g, so s = 1x and we must have z = y. Therefore, ¢x is injective. Now suppose
p,q € S with pp = q¢, and let (z,y) € p. We have (x¢,y¢) € pp = q¢p. There exists an (a,b) € ¢
such that (a¢,bp) = (x¢,y¢). Since ¢y is injective, we must have (a,b) = (z,y), so p = ¢ in S.
Therefore, ¢g is also injective, and so we have that ¢ is injective.

(iv) Since 2T = yT = z¢ = y¢ and p’ = ¢q7 = pp =q¢ for all z,y € X and p,q € S, we
have that ¢ is well-defined.

If (xT,yT) € s, then (x,y) € TsT. As before, there exists an (a,b) € s such that (a¢,bg) =
(¢, yp). Therefore, (2T¢,yTd) = (xp,yd) € s¢ = (s7)p. Also, if (xT¢,yT¢) € (s7)¢, then
(xp,yo) € s¢, so there exists an (a,b) € s for which (a¢, bp) = (z¢,yp). Since T' = ker ¢, we have
that (aT,bT) = (2T, yT) and (aTp,bT¢) = (xT¢,yT'd). Therefore, ¢ is a scheme homomorphism.

If sT € ker ¢, then s¢p = 1y/, so s € ker¢p = T. If (zT,yT) € sT, then (z,y) € TsT =T, so
2T = yT, and thus (2T, yT) € 1x/r. Therefore, ker ¢ = {1x/7}, so ¢ is injective. ]

EXERCISES.

Exercise 5.1. Prove the Second Isomorphism Theorem for schemes: If T and U are closed subsets
of a scheme S for which U C Kg(T'), then TU is a closed subset of S and

T)(TNU) = (TU))U.
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Exercise 5.2. Prove the Third Isomorphism Theorem for schemes: If T and U are closed subsets
of S for which T"C U C S, then
SJU = (S)T))(UJT).

Exercise 5.3. Give an example of a scheme homomorphism ¢ : S — S and a closed subset T of S

such that ¢(7T') is not a closed subset of S. (Hint: It is necessary that ker ¢ be a non-normal subset
of S.)

Exercise 5.4. Recall that the set of combinatorial automorphisms Aut(S) of a scheme (X, S) was
defined to be the set of permutations of X for which (z,y) € s = (xz¢,y¢) € s, for all s € S.
The set of all scheme-automorphisms of (X, S) is the set of all bijective scheme homomorphisms
¢:(X,S) = (X,S) which preserve structure constants; i.e. a,pqp.sp = Gpgs, for all p,q,s € S.

(a) Show that the set of all scheme-automorphisms of (X, S) is a group under composition. (We
will denote this by scheme-Aut(S).)

(b) Show that ¢ — ¢g defines a group homomorphism from scheme-Aut(S) into Sym(S) with
kernel Aut(.S).

(¢) A combinatorial isomorphism of S is a bijective scheme homomorphism with domain S that
is induced by letting a permutation 7 € Sym(X) act on X x X and setting s7 = {(z7,y7) : (x,y) €
s}. Show that the scheme (X, S7) will have structure constants satisfying a,r 4rsr = apgs, for all
p,q,s €S.

(d) Find an example of a combinatorial isomorphism of a scheme that is not an automorphism.

(e) Show that schemes that are combinatorially isomorphic will have the same character tables.

(f) Show that every combinatorial isomorphism of a thin scheme is a combinatorial automor-
phism (hence a group automorphism).

Exercise 5.5. Let (X, S5) be a Schurian association scheme. Let G = Aut(S), x € X, and let H
be the stabilizer of z in G. Define amap ¢ : X — G/H by y¢ = gH <= yg~' =z, forally € X.
Show that ¢ induces a combinatorial isomorphism from (X, S) — (G/H,G/H).
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6 Categorical Considerations for schemes

The modern approach to algebraic objects is to consider them from the point of view of categories.
The results of the previous two sections make it possible to do this for schemes. The result is a
category which in many ways resembles the category of groups, and after a minor modification the
category of schemes becomes a non-abelian exact category containing the category of groups as a
subcategory.

Start by considering the category of schemes, whose objects are schemes and whose morphisms
are scheme homomorphisms. For each pair of schemes (X, S) and (Y, 7)), there is a set (possibly
empty) of scheme homomorphisms Hom((X,.S), (Y,T)). The composition of two scheme homomor-
phisms ¢ : (X,5) — (Y,T) and ¢ : (Y,T) — (Z,U) is defined whenever ¢ is surjective. (This
composition law is similar to that of groups.)

One of the fundamental properties of the category of groups is that it has a zero object, which is
a unique object 1 that is both an initial object and a terminal object. This means that for any object
A in the category, there are unique morphisms 1 — A (initial object) and A — 1 (terminal object).
In the category of schemes, the trivial scheme (1,1) = ({z}, {(z,x)}) is easily seen to be a terminal
object, because the only possible scheme homomorphism from an arbitrary scheme (X, S) into (1, 1)
sends every element of X to x and every element of S to {(x, )}. On the other hand, given a scheme
(X, 9), for any fixed z € X we can define a scheme homomorphism ¢, : ({z}, {(z,z}) = (X, S) by
setting z¢, = x € X and (z, )¢, = 1x. Since x € X was arbitrary, this scheme homomorphism is
not uniquely defined, so (1, 1) is not an initial object. In other words, if we approach the category
of schemes this way the category will not have a zero object.

However, the lack of a zero object can be alleviated after a minor modification. For every scheme
(X, S), instead of considering X as simply being the set {z1,...,z,}, we shall consider X as the
totally ordered set (x1,...,z,) with initial element x := x1, which we shall refer to as the base point
of the scheme (X,S). The category of schemes is then defined to be the category whose objects
are the collection of finite schemes with base point and whose homomorphisms are the scheme
homomorphisms ¢ : (X, %,S) — (Y,*,T) for which ¢(x) = %. Since the composition of two such
scheme homomorphisms will have this property, the composition law is basically the same as before.
However, now the category will have a zero object, because for any scheme (X, x, S) with base point
there will be a unique scheme homomorphism from (1,x,1) — (X, *,S) that preserves base points.

The natural choice of base point for a thin scheme (G, G) is the identity element of G. If
¢ : G — H is a homomorphism between finite groups, then the identity of H is the image of the
identity of G under ¢. Thus group homomorphisms can be regarded as homomorphisms in the
category of schemes between thin schemes with base point. This means that the category of groups
can be regarded as a subcategory of the category of schemes. Since every scheme homomorphism
between two thin schemes is a group homomorphism, the category of groups is a full subcategory
of the category of schemes.

Note that a combinatorial automorphism of a scheme (X, S) can be regarded an isomorphism
in the category of schemes between (X, x,S) and (X, ', S) by choosing the base point " to be the
image of *.

The next fundamental property of the category of groups is the existence of a direct product.

Definition 6.1. Let (X, S) and (Y, T) be two schemes. The direct product of (X,S) and (Y,T) is
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the scheme defined by
(X,8) x (V,T) i= (X x V,$ &),

where ST ={s®t:s € S,t € T}, and we have that for each s € S andt € T,
((71,91), (T2,92)) € 5@t == (71,72) € 5 and (y1,y2) € t.

The definition of s ® t is motivated by the categorical product of the corresponding graphs,
Indeed we have that the adjacency matrices o4y = 05 ® 0y for all s € S and t € T, and thus the
adjacency algebras have the property (as with groups) that

C[S @ T] = CS @¢ CT,

If (X,*,S) and (Y, *,T) are schemes with base point, then the base point of the direct product
(X X Y, %, S ®T) should be chosen to be (*,x).

We leave it to the reader to define the direct product and the direct sum of an infinite number
of schemes, which can be done in a similar fashion to the way it is done with groups.

Once one has the idea of a direct product for finite schemes, one can define an internal direct
product, and write a scheme S as the direct product T'® U of two of its closed subsets T" and U if
S=TU, TNU =1, and every element s of S can be written uniquely as s = tu = ut for t € T
and u € U. Under these conditions, it is routine to check that S and T'® U (and U ® T') are
combinatorially isomorphic, so we can write S =T ® U.

Continuing on this line of ideas, we say that a finite scheme is indecomposable if it cannot be writ-
ten as the direct product of two of its nontrivial closed subsets. In group theory, the Krull-Schmidt
theorem asserts that every finite group can be written as the direct product of indecomposable finite
groups in essentially only one way — the list of indecomposable direct summands of a finite group
is uniquely determined up to group isomorphism. For commutative association schemes, this is a
theorem of Ferguson and Turull. This seems to be still open for schemes in general, though it is
routine to show that any scheme of finite order can be written as the direct product of indecom-
posable schemes. So the issue is to show that the list of indecomposable summands is unique up to
scheme isomorphism.

Another equally important issue is the notion of a composition series for schemes. The most
natural notion of a composition series for a scheme (X,5) is that of a nested sequence of closed
subsets

1=ThcThch<C---CTp, =5

with the property that each of the quotient schemes T; JT;_ fori € {1,...,k} is a primitive scheme.
A scheme is primitive if its only closed subsets are the trivial one and the scheme itself. It is routine
to show that every scheme of finite order has at least one composition series. However, unlike
the Jordan-Holder theorem in finite group theory, the lists of composition factors occurring in two
different composition series for a scheme S do not have to agree up to scheme isomorphism. In
fact, it follows from a result of Rao, Ray-Chaudhuri, and Singhi concerning commutative table
algebras whose structure constants and Krein parameters are both nonnegative, which states that
the composition factors of a commutative association scheme will agree up to algebraic isomorphism
on their adjacency algebras. (This is Theorem 11.9.11 in the book of Bannai and Ito.) But there are
examples that show the composition factors do not have to agree up to combinatorial isomorphism.
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One example is the scheme arising from the distance regular graph defined by the generalized 6-gon
with 126 vertices.

An alternative notion of a composition series of schemes weakens the requirement on the factors
to that of being simple schemes. In line with the notion of a simple group, (X, .S) is a simple scheme
when 1 and S are the only normal closed subsets of S. Zieschang has shown that the analog of the
Jordan-Holder theorem does hold in this setting: the list of simple composition factors of this type
appearing in any composition series for a scheme of finite order is unique up to order and scheme
isomorphism.

The most important property of the category of schemes has essentially already been established:
exactness. We have seen in the previous section that for any injective scheme homomorphism ¢ :
T — S, T'¢ will be a closed subset of S, and so there is a canonical surjective scheme homomorphism
mod T¢ : S — S)/(T¢). In the category of schemes, this means that any exact sequence of the
form 1 — T — S can be canonically completed to a short exact sequence

1—>T3>S—>S//(T¢)—>1.

In addition, if we start with any surjective scheme homomorphism ¢ : S — U, then there is a
canonical way to complete the exact sequence S — U — 1 to a short exact sequence

l—=keryy -9 —U—1

in the category of schemes. These ideas are analogous to the notion of exactness of the category of
abelian groups. (The expert reader will recall that usually when one speaks of an exact category, one
starts with an additive category; i.e. one for which the set of homomorphims between objects has
an abelian group structure, which does not hold for the category of schemes.) So we can conclude
that the category of schemes is a non-additive exact category that contains the category of groups
as a full subcategory.

EXERCISES.

Exercise 6.1. Suppose that a scheme S =T ® U is the direct product of two closed subsets 7" and
U. Show that every s € S can be uniquely expressed as s = tu for some t € T and u € U, and that
tu = ut.

Exercise 6.2. Suppose that we modify the category of commutative association schemes as we have
done with the modified scheme-category. This gives us a category A whose objects are commutative
association schemes with base point, and whose morphisms are given by the scheme homomorphisms
defined on commutative association schemes that map base points to base points.

Show that A is a exact category. Is A an additive exact category?

Exercise 6.3. It is possible for two association schemes (X,S) and (X,S’) to be algebraically
isomorphic but not combinatorially isomorphic. A combinatorial isomorphism ¢ : (X, S) — (X, 5)
arises from a permutation ¢ of X, which induces a bijection (z,y) — (z¢,y¢) on X x X, which
then transforms the relations of S into the relations of S”. Such a map will automatically preserve
structure constants, i.e. apgs = Apggese for all p,q,s € S. An algebraic automorphism is simply a
bijection from S to S’ that preserves structure constants.
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Show that the following pair of symmetric association schemes are algebraically, but not com-
binatorically, isomorphic.

r o 1 1 1 2 2 2 2 2 2 3 3 3 3 3 37
i 0 1 1 2 2 3 3 3 3 2 2 2 2 3 3
i1 o 1 3 3 2 2 3 3 2 2 3 3 2 2
i1 1 o 3 3 3 3 2 2 3 3 2 2 2 2
2 2 3 3 o0 1 2 3 2 3 2 3 2 3 1 1
2 2 3 3 1 o0 3 2 3 2 3 2 3 2 1 1
2 3 2 3 2 3 o0 1 2 3 3 2 1 1 2 3
2 3 2 3 3 2 1 o0 3 2 2 3 1 1 3 2
2 3 3 2 2 3 2 3 O 1 1 1 3 2 3 2
2 3 3 2 3 2 3 2 1 o0 1 1 2 3 2 3
3 2 2 3 2 3 3 2 1 1 o0 1 2 3 3 2
3 2 2 3 3 2 2 3 1 1 1 o 3 2 2 3
3 2 3 2 2 3 1 1 3 2 2 3 0 1 2 3
3 2 3 2 3 2 1 1 2 3 3 2 1 o0 3 2
3 3 2 2 1 1 2 3 3 2 3 2 2 3 0 1

L3 3 2 2 1 1 3 2 2 3 2 3 3 2 1 0 J

and

r 0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 37
i o 1 1 2 2 3 3 3 3 2 2 2 2 3 3
i1 o 1 3 3 2 2 3 3 2 2 3 3 2 2
i1 1 o 3 3 3 3 2 2 3 3 2 2 2 2
2 2 3 3 o0 1 2 3 2 3 2 3 2 3 1 1
2 2 3 3 1 o0 3 2 3 2 3 2 3 2 1 1
2 3 2 3 2 3 o0 1 3 2 2 3 1 1 2 3
2 3 2 3 3 2 1 o0 2 3 3 2 1 1 3 2
2 3 3 2 2 3 3 2 o0 1 1 1 2 3 3 2
2 3 3 2 3 2 2 3 1 o0 1 1 3 2 2 3
3 2 2 3 2 3 2 3 1 1 o 1 3 2 3 2
3 2 2 3 3 2 3 2 1 1 1 o0 2 3 2 3
3 2 3 2 2 3 1 1 2 3 3 2 0 1 2 3
3 2 3 2 3 2 1 1 3 2 2 3 1 o0 3 2
3 3 2 2 1 1 2 3 3 2 3 2 2 3 0 1

L 3 3 2 2 1 1 3 2 2 3 2 3 3 2 1 0 J

Exercise 6.4. Show that schemes that are algebraically isomorphic have identical character tables
(up to row and column permutation).

Exercise 6.5: Show that a finite scheme (X,.S) of order n is primitive if and only if every non-
identity relation s € S is the adjacency matrix of a connected graph with n vertices.

Exercise 6.6: Suppose that 1 =T — S — U — 1 is exact in the modified scheme category.
(a) Show that if 7" and S are Schurian, then U is Schurian.
(b) Show that if S and U are Schurian, then 7" is Schurian.
(c) Show that if T"and U are Schurian, then S need not be Schurian.

(Hint: There is a nonschurian scheme of order 16 with a nontrivial thin radical.)

Exercise 6.7: Show that any scheme homomorphism between thin schemes can be regarded as a
group homomorphism between the respective groups.
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7 The Category of Table Algebras

While the modified scheme-category provides a convenient perspective, it certainly does not provide
a broad enough footing to work with all of the different aspects of schemes. For instance, both the
valency map and embeddings of fusion subalgebras into adjacency algebras provide examples of
natural algebra homomorphisms that do not arise from linear extension of scheme homomorphisms
to the adjacency algebra CS. In order to understand this phenomenon, the perspective of table
algebras will be useful.

As with the development of association schemes, table algebras were first introduced only in
the commutative case. The non-commutative table algebras we have introduced here were initially
referred to as generalized real nonsingular table algebras by Arad, Fisman, and Muzychuk.

Definition 7.1. A finite-dimensional unital C-algebra with basis B is a table algebra with table
basis B, denoted CB, if

(a) 1 € B (1 being the multiplicative identity in CB);
(b) there is an involution * on CB for which b* € B, for allb € B;

(c¢) all of the structure constants \peq (b,c,d € B) relative to the table basis B are nonnegative
real numbers;

(d) for allb,c € B, \pey >0 <= c=10%;
(e) for allb € B, \pr1 = \prp1-
If =" x,b € CB with each x;, € C, then we assume z* = _ Tpb*, where T denotes complex

beB beB
conjugation, and we define the support of x to be supp(z) = {b € B : x;, # 0}.

It should be clear that the adjacency algebra of a scheme is an example of a table algebra.
Indeed, many of the basic properties of table algebras are straightforward generalizations of the
properties of the adjacency algebras of schemes that we have already established. We will record
these here, leaving their proofs to the exercises.

Proposition 7.2. Let CB be a table algebra with table basis B.
(a) For all a,b,c € B, Aape = Aprarcr-
(b) For all a,b,c,d € B, > AapeAecd = Y. NaedNbee-

c€B c€B
(c) For all b,c € B, Apprc = Nppre>
(d) The mapt: CB — C given by t(>_ xpb) = x1 is a trace on CB; i.e. a C-linear map satisfying
t(zy) = t(yx), for all x,y € CB.bGB
(e) CB has a nondegenerate Hermitian form given by [z,y] = t(xy*), for all x,y € CB.

(f) For all a,b,c € B, [ab, c] = |a, cb*] and [a, bc] = [b*a, .
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(9) For all a,b,c € B,
/\abc)\cc*l - /\c*ab* )\bb*l - )\cb*zz)\aa*l'

(h) CB is a semisimple algebra.

Since t is a trace on the semisimple algebra CB for which the corresponding Hermitian form
[z,y] = t(zy*) is nondegenerate, the restriction of ¢ to any of the simple components in the Wed-
derburn decomposition CB = @Xem(c ) CBey has to be a nonzero scalar multiple of the usual
trace on the full matrix ring CBe,. It follows that ¢ can be expressed as ) z,x, for some nonzero

X
scalars z, € C. By an argument similar to the one we used for CC’s, one can establish the following
formula for the centrally primitive idempotents e, of CB:

b*
ey = 2y X( )b, for all x € Irr(CB).

One important property of table algebras is a generalization of the valency map.

Theorem 7.3. Let CB be a table algebra with table basis B. Then there exists a unique algebra
homomorphism |- | : CB — C for which |b| = |b*| > 0 for all b € B.

Proof. Let B= > b, and let My be the matrix representing B in the left regular representation of
beB
CB. The entries of My are (D Aped)ac. We claim that all of these entries are positive. Indeed, for
beB
each pair ¢,d € B, we have

[Cd*, Cd*] = [d*d, C*C] > )\dd*l)\cc*l > 07

so there exists a b € B such that A.4«+ # 0. By the preceding proposition, it follows that Ay.q > 0
for this b, so the claim follows.
By the Perron-Frobenius Theorem, M4 has a unique eigenvalue p of largest modulus, and this ;1

is positive, has multiplicity 1, and its corresponding eigenvector v = Y ub has positive coordinates.
beB
Note that for each ¢ € B, we have

A A

Mp(ve) = Blve) = (Bv)e = pu(ve),

so vc is another eigenvector for My with eigenvalue p. Since p has multiplicity 1, ve has to be
a scalar multiple of v for each ¢ € B. Therefore, there exists a function f : B — C such that
ve = f(c)v. Since all of the coordinates of v are positive real, we can show that for all ¢ € B,

1
fle) = — Z UpAped, for each d € B.

v,
4 4eB

In particular, f(c) is positive for all ¢ € B.

Being a projection onto a one-dimensional eigenspace, it is straightforward to show that f
extends to an algebra homomorphism from CB — C, which we will also denote by f.

Since f is a one-dimensional representation, f is an irreducible representation of the semisimple
algebra CB. Tt follows then that g(c) = f(c*) is another irreduicble representation. If f # g, then
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f and g are inequivalent irreducible representations of CB. If e; and e, are the corresponding
centrally primitive idempotents, then we will have

b*
0=tleseg) = 22 Z {bb*l)iii*l (be)

— Z o)

Mg
beB UL

= f(Zfzg Z )\bb*l *b)>
beB

which is a contradiction because 1 € supp(b*b) and f(c) > 0 for all ¢ € B. Therefore, we must
have f = g, so we can conclude that f(b) = f(b*) for all b € B. This concludes the proof of the
theorem. O

The algebra homomorphism described in the preceding theorem is called the degree map of the
table algebra. If we rescale the table basis of CB by replacing every element of B with b = u b,

Apb* 1

then we obtain a table algebra CB with the property that |l;| = Ajjep, for all b € B. This operation
is called standardizing the table algebra. The adjacency algebras of schemes provide examples of
table algebras for which the basis of adjacency matrices is standardized.

For commutative table algebras CB, one can define a Schur product abstractly by setting b o
¢ = Gyeb for all b,c € B, and the two algebras (CB, o) and (CB,-) are isomorphic commutative
semisimple C-algebras. As we did earlier, one can define the Krein parameters to be the structure
constants for (CB,o) relative to its basis E of centrally primitive idempotents under ordinary
multiplication. If these Krein parameters are all nonnegative, then (CE, o) is a table algebra that
is dual to CB (and, indeed, the dual of CFE is isomorphic to CB). However, it is an open problem
to find necessary and sufficient conditions on the structure constants of CB that are equivalent to
the Krein parameters being nonnegative.

Several categorical notions for schemes can be extended to the setting of table algebras, with sim-
ilar properties. Here we will provide a list, leaving the properties of these notions to be established
in the exercises.

Let CB be a table algebra with table basis B.

(a) A sub-table algebra is a table algebra CD that is a subalgebra of CB with the following
properties:

(a) for all d € D, there are nonnegative real numbers fq4, such that d = > uab;
beB

(b) the subsets supp(d) := {b € B : fg > 0} of B as d runs over D are pairwise disjoint;
and

(c) supp(l) = {1}.
(Note that sub-table algebras of group algebras include Schur subrings, and sub-table
algebras of the adjacency algebras of schemes include fusion subrings.)

(b) If b,c € B, then the support of be is supp(bc) := {d € B : A\peg > 0}, and if R, S C B, then

RS = U U supp(rs).

reR seS
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If R C B, then we let R* = {r*:r € R}, R* = ) r, and the order of Ris o(R) = >

reR reR

A closed subset of B is a subset C' C B for which C*C C C.

Closed subsets of table bases are analogous to closed subsets in schemes and subgroups of
groups. Given a closed subset C' of B and b € B, the left coset Cb is |J . supp(cb). Right
cosets are defined similarly, and double cosets are defined to be the subsets

CbC = U U supp(cbd).

ceC deC

|r[?
’\rr*l ’

The set of left cosets (resp. right cosets, double cosets) of a closed subset of B is a partition
of B.

Given any closed subset C' of a table basis B, the quotient table algebra C[B//C] is the table
algebra with table basis BJC = {bJ/C : b € B}, where

1

b)C = o(C)

(ChC)*.

If C is a closed subset of a table basis B, then the structure constants of C[B//C] are given
in terms of the structure constants of CB by

1
Aujesseare = ey DD A

ecCaC feCbC

for any g € C'dC.

One can check that the quotient table algebra of a group algebra CG relative to a subgroup
H is isomorphic to the ordinary Hecke algebra C[G /H], and the quotient table algebra of the
complex adjacency algebra of a scheme S relative to a closed subset T' of S will be isomorphic
as algebras to C[S/T.

If CB and CD are table algebras, then B® D :={b®d: b€ B,d € D} is a table basis for a
dim(B) dim(D)-dimensional table algebra C[B ® D] = CB ®¢ CD called the tensor product
of the table algebras CB and CD. (This is analogous to the direct product of groups and
schemes. )

If CB and CD are table algebras, we can form the wreath product C[B ! D] with table basis
B D given by
B:D={l@d:deD}| {p@D":be B\ {1}}.

Note that the wreath product C[B ! D] is defined to be a certain sub-table algebra of the
tensor product C[B ® D] having dimension dim(D) + dim(B) — 1.

An algebra homomorphism ¢ : CB — CD between two table algebras with respective table
bases B and D is a table algebra homomorphism if
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(b) ¢(b*) = ¢(b)*,, for all b € B;

(c) for all b € B, there are nonnegative real numbers p, 4 such that ¢(b) = > upqd; and
deD

(d) for all b,c € B, supp(¢(b)) N supp(¢p(c)) # 0 = there exists p,. > 0 such that
¢(b> = pb,c¢(c)'

Remark. The definitions we have given for sub-table algebras and for table algebra homomorphisms
are different than what has appeared in earlier literature. The motivation for the new definitions
is to include both the degree map CB — C and the inclusion map CT" — CS of a fusion of a
scheme as examples of table algebra homomorphisms, and yet still have a definition which allowed
a reasonable composition law for homomorphisms. In previous treatments, homomorphisms of table
algebras have been restricted to those in which supp(¢(b)) consists of a single element of D in all
cases, which is useful when dealing with problems concerning duality of table algebras. We will
refer to this type of table algebra homomorphism as a fission-free table algebra homomorphism,
and say that a table algebra homomorphism has fission if there is at least one table basis element
for which the support of the image of this element has size larger than one.

It would be nice to know the conditions for a table algebra to arise from an association scheme.
Of course, this is the case if there is an injective table algebra homomorphism ¢ : CB — M, (C) for
which ¢(b) is a (0, 1)-matrix for every b € B and and ), ¢(b) = J.

EXERCISES.

Exercise 7.1. Let CB be a table algebra, and let ¢ be its trace. Let t = > z,x be the
x€lrr(CB)
expression of the trace ¢ as a linear combination of the irreducible characters of CB, for some

nonzero scalars z, € C. Show that the formula for the unique centrally primitive idempotent e,, for

which x(e,) # 0 is
b*
ey = Zy E —X( )b.

A *
bep b7l

Exercise 7.2. Suppose that CD is a sub-table algebra of the table algebra CB. Prove that the
degree homomorphism of CD agrees with the restriction of the degree homomorphism of CB to
CD.

Exercise 7.3. Verify the following properties of closed subsets of a table basis B.

If C' C B is a closed subset, then 1 € C.

(a
(b

If C' C B is a closed subset, then C* = C.

)
)
(c) If C C B is a closed subset and ¢,d € C, then A.g = 0 whenever b € B\ C.
(d) If C C B is a closed subset, then CC' is a sub-table algebra of CB.

)

(e) If C, D C B are closed subsets, then C'N D is a closed subset.
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(f) If C C B is a closed subset, then the set {bC : b € B} of left cosets of C'in B is a partition
of B.

(g) If C C B is a closed subset, then the set {CbC' : b € B} of double cosets of C'in B is a
partition of B.

Exercise 7.4. Let C be a closed subset of B. If u: B — C* and the table basis B is re-scaled to
B' = {u(b)b: b € B}, show that the order of C’ = {u(c)c: ¢ € C'} will be equal to the order of C'.

Exercise 7.5. Suppose CB is a table algebra with standardized table basis B. Show that for any
closed subset C of B, BJ/C' is a standardized table basis of C[B//C], and o(B)/C) = zgg;
Exercise 7.6. Let C' be a closed subset of a table basis B. Show that the map b — 0/ C induces a
fission-free table algebra homomorphism from CB onto C[B//C].

Exercise 7.7. Since table algebra homomorphisms are algebra homomorphisms, the kernel of a ta-
ble algebra homomorphism ¢ : CB — CD is {a € CB : ¢(a) = 0}. A table algebra homomorphism
will be injective when the dimension of the image is the equal to the dimension of the domain,
which occurs precisely when the kernel is {0}.

(a) Find an example of a fission-free table algebra homomorphism that is not injective.

(b) Give an example of an injective table algebra homomorphism that has fission.

Exercise 7.8. Suppose that C, D are closed subsets of a table basis B that satisfy:
(a) forallce C and d € D, e¢d = dc € B;
(b) CD = B; and
(c) CnD={1}.

Prove that CB = C|[C ® D] as table algebras.

Exercise 7.9. Show that the composition of table algebra homomorphisms is a table algebra
homomorphism.

Exercise 7.10. Let B be a standardized table basis. The set of linear elements of B is L(B) =
{b € B:bb* = Abb*ll}-
(a) Show that |b| > 1, and equality holds if and only if b is linear.

(b) Show that L(B) is a closed subset of B. Is L(B) a group?

Exercise 7.11. Let CB be a table algebra with table basis B. We say that two subsets S, T C B
are conjugate in B if there exists a b € B such that bSb* C T and b*Tb C S.

a) Show that if ;7" C B are conjugate in B and b € B for which bSb* C T and b*Tb C S, then
bSb* =T and b*Th = S.

b) Show that conjugacy is an equivalence relation on the family of subsets of B.
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Exercise 7.12. Let CB be a table algebra with table basis B. If S C B, then the normalizer of S
is Np(S) = {b € B :bSb* C S}. Show that if S is a subset of B, then Ng(S) is a closed subset of
B, and bSb* = S for all b € Ng(S).

Exercise 7.13. Show that the modified category of schemes is a full subcategory of the restricted
category of table algebras whose morphisms consist only of fission-free homomorphisms. Show that
the category of schemes whose morphisms are table algebra homorphisms between schemes is a full
subcategory of the category of table algebras.
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8 Sylow Theory for Table Algebras

In this section we present an analog of Sylow’s theorem for certain types of table algebras that
includes Sylow’s theorem for finite groups, following the exposition of Blau and Zieschang that is
based on properties of standardized table algebras due to Arad, Fisman, and Muzychuk.

Proposition 8.1. Let CB be a table algebra with standardized table basis B. Let b € B and let C
and D closed subsets of B. Then the following hold:

(a) For alld € B, ) Apea = |b];

ceB
(b) bCt = |b|CT <= bC C C;
(c) bC* = PJ(BC)* = supp(tb) € C;
(d) bCt = B(bC)T for some positive 5 < |b|;
(e) CTbD* = u(CoD)*, for some positive integer u; and
(f) o(CbD) = o(D) <= b*Cb C D.

Proof. (i): Since B is a standard table basis, we have

> Nedld] = Ageer

ceB ceEB

= |d"b] = |d][b],

o (i) follows by cancelling |d|.
(ii): bCT = |b|CT = supp(bc) C C for every c€ C = bC C C.

On the other hand, suppose bC' C C. Then bCT = > (D Npead) = Z pad, where 0 < pg =
ceC deC
> Mvea < |b| by part (i). Since |bCH| = |b]|CT| = |b] Z |d|, we can conclude that g = || for every
ceC

d € C, and (ii) follows.
(iii): From the proof of (ii), we see that bC™ = |b|(bC)" — Z Xoca = || for every d € bC.

By (i), this is happens if and only iff \yeq = 0 for all e € B\ C, for all d e bC. But \peg = 0 <—
Ap-ge = 0, so this is equivalent to b*d C C for all d € bC. Finally, b*d C C, for all d € bC is
equivalent to b*bC' C C', which is equivalent to supp(b*b) C C', so (iii) holds.

(iv): Write bC = {b = by, b, ...,by}. Since b;,C = bC for all b; € bC, we have that b;,CT =
> pijbj with p;; > 0, for all 4, j € {1,...,m}. If we set M = (u;;)i;, then the fact that (b,CT)CT =
j=1
|CT|b;,Ct implies that M? = |C"|M. Since every entry of M is positive, this implies that each
column of M is an eigenvector for the Perron-Frobenius eigenvalue of M. Since this eigenvalue has
multiplicity 1, this implies that A has rank 1. Also, (bC')"*Ct = |CH|(bC)" by (ii), so [CF| > b; =

j
Y b CT =375 by = > (>0 pij)bj, which implies that every column of M has the same column
i i g i

sum |CT|. Since M has rank 1, every column of M has to be the same vector. Therefore, all of the
entries py; are equal to the same positive number 5, and we can conclude that bC* = > py;b; =
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B(bC)*. Since it is easy to see that § = > Ay for all d € bC, it follows from (i) that 5 < |b],
ceC
which proves (iv).

(v): CTbDt = > pad for some pg > 0, so it suffices to show that all of these p, are equal
deCbD
to one another. By (iv), we have CtbCT = CHT(bD)* = B > aq(Cd)*. Therefore, pe = iy
debD
whenever e, f lie in the same right coset of C'. Similarly, we can show that . will be equal to py

whenever e, f lie in the same left coset of D. If e, f € CDD are arbitrary, then there exists a c € C'
and d € D such that f € supp(ced). But then there exists a g € B such that g € supp(ce) and
f € supp(gd), so we have p, = pu, = piy, for all e, f € CbC, as required.

(vi): We have that o(Cb)o(D) = [(CH)T||IDT| = | >> > (> Aae)el < [(CH)T||[(CHD)T.

¢€CbD a€Cb deD
Therefore, o(D) < o(CbD), and equality holds if and only if Ay = 0 for all a € Cb, b € B\ D,

and e € CbD. Since A\ype = 0 <= ey = 0, this is equivalent to (CbD)*(Cb) C D, which is
equivalent to b*C'b C D, as required. O

It goes without saying that the analogous properties for right cosets can be established in a
similar fashion, as it can be shown that o(CbD) = o(C) <= bDb* C C. The analog of Sylow’s
theorem we seek applies to table algebras that are p-fractional and p-valenced for some prime p.
We now define these notions.

Definition 8.2. Let CB be a table algebra with standardized table basis B. Let p be a prime. We
say that CB 1is p-fractional if for all b,c,d € B, there exists nonnegative integers n, m such that

Abed = me and CB s p-valenced if for all b € B, there exists a nonnegative integer ¢ such that

|b| = Appr1 = PZ-

Note that if G is a finite group, then the group algebra CG is a p-fractional p-valenced table
algebra for any prime p.

Definition 8.3. Let CB be a table algebra with standardized table basis B. A closed subset C' of B
is a closed p-subset of B if CC' is p-valenced and o(C') is a power of p. A closed p subset P of B is
a Sylow p-subset of B if P is a closed p-subset of B for which o(B )/ P) is not divisible by p. The
set of Sylow p-subsets of B is denoted by Syl,(B).

Lemma 8.4. Let p be a prime, and suppose CB is a p-fractional p-valenced table algebra with
standardized table basis B. Suppose C' and D are closed p-subsets of B.

(a) For allb € B, o(bC), o(Cb), o(CbD) are powers of p that are divisible by o(C').
(b) C[B)C] is a p-fractional p-valenced table algebra with standardized table basis B/C.

(¢) If p divides o(C'), then p divides the order of the group L(C) consisting of linear elements of
C.

Proof. (i): Let b € B. It suffices to show that o(CbD) is a power of p that is divisible by o(C).
Since CB is p-fractional, we have by the previous lemma that there exists a positive yu € Z[i] such
that CTbD* = p(CHD)*. If p = 7% for some positive integer m coprime to p and nonnegative
integer k, then we have that [C*[[b|[D*| = Z[(CbD)*|. Since CB is p-valenced, the left hand side
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of this equation is a power of p. Therefore, m has to be 1 and |[(CbD)"| = o(CbD) is a power of p
that is divisible by |C*| = o(C).

(ii): In a previoius exercise we saw that C[B/C] is a table algebra with standardized table basis
B//C. The degree of each b)C € B)/C is |b)C| = 0(()(()3?), which is a power of p by (i). Therefore,
C[B//C] is p-valenced. Since o(C) is a power of p and CB is p-fractional, it follows from the formula
for structure constants of CB that each of these is an element of Z[i].

(iii): For z € C, we have that © € L(C) <= |z| = 1, so o(L(C)) is the order of the group
L(C). Since CB is p-valenced, |y| will be a positive power of p for every y € C'\ L(C). Therefore,
o(C) and o(C' \ L(C)) = o(C) — o(L(C)) are both divisible by p, so o(L(C')) is also divisible by
D. 0

Theorem 8.5. (Sylow’s theorem for Table Algebras) Let p be a prime, and suppose CB is a
p-fractional p-valenced table algebra with standardized table basis B. Then the following hold.

(a) SyL,(B) #0.

(b) If P is a closed p-subset of B for which p divides o( B/ P), then there exists a closed p-subset
P’ such that P C P' C Ng(P) and o(P") = po(P).

(c) Any two Sylow p-subsets of B are conjugate in B.
(d) |Syl,(B)| =1 mod p.

Proof. (i): If p does not divide o(B), then the closed subset {1} of B is a Sylow p-subset of B by
definition. If p divides o(B), then by the previous lemma, o(L(B)) is divible by p. Therefore, B
has closed p-subsets, and so since B is finite it must have maximal closed p-subsets. The fact that
every maximal closed p-subset is a Sylow p-subset in this case will be a consequence of (ii).

(ii): Since p divides o( B/ P), the order of the group L(B// P) must be divisible by p. By Cauchy’s
theorem, L(B//P) contains a subgroup H of order p. Since H is a closed subset of B/ P, there
exists a closed subset P’ of B such that P C P’ and P'/P = H. Since P’)/P consists of linear
elements of B//P, we have that P’ C Ng(P). Furthermore, p = o(P')/P) = o(P’")/o(P), proving
(ii).

(iii): Suppose P, @ € Syl,(B). For each P-Q-double coset PbQ) for b € B, we have that o( PbQ)
is a power of p that is divisible by o(P). Since the set of P-Q-double cosets is a partition of B, there
is at least one P-Q-double coset Pby@ for which o(P) = o(PbyQ) = o(Q). But we know that these
equalities can hold if and only if byQb; € P and bjPby, C (). Therefore, P and () are conjugate in
B.

(iv): Let P be a Sylow p-subset of B. If P = {1}, then it is the unique Sylow p-subset of B, so
we are done. If P # {1}, then o(L(P)) is divisible by p, and hence L(P) contains a subgroup H
of order p. H acts by conjugation on the set of all Sylow p-subsets of B. Since the orbits of this
action have sizes either 1 or p, it suffices to show that the number of Sylow p-subsets that are fixed
under conjugation by H is congruent to 1 modulo p.

If @ € Syl,(B) is fixed under conjugation by H, then H C Np(Q), and thus HQ is a closed
subset of B. If H @, then o(HQ/Q) = o(H) = p, which is a contradiction because B does
not contain a closed subset of order po(Q). So we must have that H C @ whenever @ is a Sylow
p-subset of B that is fixed under conjugation by H.
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This implies that there is a bijection between the set of Sylow p-subsets of B that are fixed under
conjugation by H with the set of Sylow p-subsets of B/ H. By induction on o(B), this number is
congruent to 1 modulo p, so the result follows. O]

EXERCISES.

Exercise 8.1. Let p be a prime, and suppose CB is a p-fractional p-valenced table algebra with
standardized table basis B. Let C be a fixed Sylow p-subset of B. Show that the number of Sylow
p-subsets of B is [{b € B : supp(b*b) C C'}|.

Exercise 8.2. Let p be a prime, and suppose CB is a p-fractional p-valenced table algebra with
standardized table basis B. Show that B has a unique Sylow p-subset.

Exercise 8.3. Suppose (X, S) is a p-valenced scheme. Let P be a Sylow p-subset of S, and let
K = Kg(P) be the strong normalizer of P in S;i.e. s*"Ps= P for all s € K.
a) Show that, for all s € S, s*s C K — s*s C P.
Hint: K P = Oy(S)/P).
b) Show that the number of Sylow p-subsets of S is bounded above by

ns)K
NOy(S/K)

Exercise 8.4. Determine all of the Sylow 2-subsets of the scheme of order 12 with basic matrix

WK OO I~ OO O =
O WU U 3O — O O i
N U === N BEN G iy
B RN WO~ OO =1~ Ot Ut
NN O WU OO
N NO = NWULOUER RO
— O OO = WOt Ot 0
O = OO RN WOl ot

(]

N

S

I
DO N OO W~ O
SOOI J T NN WO =
U O OO O I~ O Wi
LU OO O I IO = NWw

Exercise 8.4. Determine all of the Sylow 3-subsets of the scheme of order 18 with basic matrix
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0123 45666 7778889 99
10452388899 9666777
250431888999 666777
3450128 8899 9666 777
523104666 77738288999
431250666 7778889 99

6 99966 045888777123

6 99 966 5 04888777231

6 99966 450888777312

7T 888 7799904512366 6

7T 8 88 7799950423166 6

7T 888 7799945031266 6

96 6 6 99 7771232045888

96 6 69 9 7772315048838

96 6 6 9977731245088 8

8§ 777881236 66999045
8 7 77T 88 2316 6 6 99 9 5 0 4
8 777883126 66999450
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