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Introduction

These corrections are the result of feedback I received from Tim Bouma, Al-
lan Donsig, Jonathon Dorfman, Alan Hopenwasser, Michael Muskulus, and

Lewis Robinson since the book was published. I remain very appreciative of
their remarks. I also am indebted to Tanya Gerasymova and Nadya Zharko

for their assistance in preparing these “fix ups.”
Typographical and other errors are dealt with first, followed by a simpli-

fied proof of Proposition 3.14 (page 88). Replacements for Proposition 3.23
and Corollary 3.24 (pages 99–100) and Theorem 4.23 (pages 141–142) are

attached at the end of this document.

Typographical and Minor Mathematical Corrections

p. 15 In Line 7 in proof of 1.15, “By the First Isomorphism Theorem...”
should be “By the Rank Nullity theorem...”.

p. 43 Line 7 should be

〈S〉 = {

m1∑

i=1

si +

m2∑

j=1

ajsj +

m3∑

k=1

bksk +

m4∑

l=1

elslfl : m1, m2, m3, m4 ∈ Z+
0 ,

si, sj, sk, sl ∈ S, aj, bk, el, fl ∈ A}.

Line 10 should be

〈a〉 = {

m∑

j=1

bac : m ∈ Z+, b, c ∈ A}

p. 44 Line -6 should be [x] = {y ∈ A : y − x ∈ J}.
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p. 46 In Line 6 “leads to a product that is nonassociative” should be “leads

to a product that is associative”.

p. 48 Line -3 should be 5
6 + 1

3ω + ω2 + 3
2ω

3,
In Line -13 the counter in the second sum on the left side of the

formula should be h, not g.

p. 59 The displayed equation in line 8 should be

fi(x) =
∏

j 6=i

(ζi − ζj)
−1(x− ζj) .

p. 68 Line 2 should be “It is readily seen that S is a real linear

transformation”,
Line 7 should be “S is a real linear isomorphism”,
Line 8 should be “2-dimensional real vector space”, and in

Line 10 “dimC D− = 1” should be removed.

p. 82 In Proposition 3.8(1), the equation should be ETE = TE.

p. 83 The displayed equation in line 8 should be

(1 −E)T (1−E) = T − TE − ET +ETE = T − TE = T (1− E) .

p. 78 In Line -10, Ψ(w) = 1 should be Ψ(u) = 1.

p. 87 In Line 4 〈ξ1 + η1, ξ1〉 should be 〈ξ1 + η1, ξ2〉.

p. 89 In Line 5 in proof of 3.16, ϑi 6= S should be ϑi /∈ S.

p. 90 In Line -4 the modifier “such that ϑ(v0) 6= 0” can be omitted.

p. 102 The displayed equation in line 11 should be

xy = x(bz) = (xb)z = (π(x)b)z = 0z = 0 .

p. 105 In Lines 14-15 the “αj” should be “αj”,

In Line 16 “f(g(T ))” should be “f̃(g(T ))”,

In Line -6 “ranPj” should be “RanQj”.

p. 106 In Line 1 “l 6= i” should be “j 6= i”.

p. 107 In Line 3 “and let g be it any function” should be “and let g be any
function”.
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p. 109 In Line 3, the word orthonormal ought to be eigenvalues.

p. 124 In Line -2 and -1, RadA should be Rad A.

p. 126 In Line 1, J(A)kb ∈ Ω should be J(A)kb ⊂ Ω.

p. 129 In the proof of 4.14, the latter does [...] that J = M should be the

former does [...] that J = A.

p. 132 Line 10f should be:

ca = (ba)2
n−1(ba) = (ba)2

n

,

and consider (ba)2
n+1

, which is a nonzero element of J 2
n [...]

p. 137 In the second line of the proof of Lemma 4.20, the element r should

be of the form r =

k∑

j=1

sjetj , for some sj , tj ∈ R.

p. 143 In Line -1 remove “exist”.

p. 144 Line 8 should be: ∼= Q [x]/〈x− 1〉 × Q [x]/〈x+ 1〉.

p. 145 Line -8 should be: (ii) QC2
∼= Q [x]/〈x− 1〉 × Q [x]/〈x+ 1〉.

p. 145 Line -2 insert “the” before “case”.

p. 148 Eliminate problem 12b.

p. 153 Line 12 should be:

=

〈
ξ,
∑

z∈G



∑

g∈G

ᾱgz−1ηg


 z

〉
=

〈
ξ,
∑

g∈G

(
∑

z∈G

ᾱ(gz−1)−1ηz

)
g

〉

p. 156 In line 12, replace ψ1, . . . , ψq with φ1, . . . , φq.

p. 157 In line 4, U should be V .

p. 159 In line 4, UR
(`)
ij U

∗ should be U`R
(`)
ij U

∗
` .

p. 161 Line -2 in the proof of 5.7: Remove “Then a∗a ∈ Rad A,”.

p. 164 Line 11 should be:

p∗ = z−1ee∗ = ez−1e∗ = ee∗z−1 = p,
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p. 169 Line 4 remove second “that”.

p. 170 Equation below (5.15.1) should be:

h = ϕ−1

(
k∑

i=1

µiPi

)
=

k∑

i=1

µipi

p. 184 Remove second “algebras”.

p. 188 The first sentence in Problem 5 is mysteriously absent. It should be:
Consider the real algebra C under the involution z∗ = z, for all z ∈ C.

p. 194 In Proposition 6.10, X should be X.

p. 214 Line 11 should be: All that remains to prove is that [...]

p. 216 In Line 8, Sk =
∑

i

∑
j ζ

(k)
ij Eij ⊗ ak should be: Sk =

∑
i

∑
j ζ

(k)
ij Eij.

p. 216 Line -13 should be: 6.19, Theorem 4.16 and [...]

p. 217 In lines 8 and 9, θ1 should replace each occurence of θ and %.

p. 222 In Line 5, (Exercise 17) should be (Exercise 15).

p. 224 In line 15, H1 × ×H2 should be H1 × H2.

p. 224 In line 22, H1 ⊗ . . . ⊗ H2 should be H1 ⊗ H2.

p. 225 Line 18ff should be:
Hence,

〈ξ, η〉 =

m∑

i=1

n∑

j=1

m∑

l=1

n∑

k=1

αijβlk〈ei ⊗ ej, el ⊗ ek〉

=

m∑

i=1

n∑

j=1

m∑

l=1

n∑

k=1

αijβlk〈ei, el〉〈ej, ek〉
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The simplified proof of Proposition 3.14

Though the original proof is correct, the forward direction has a simpler

proof by contradiction.
Let L ∈ LatA be nontrivial and choose vectors w ∈ V \ L and 0 6= u ∈ L.

Because A is a transitive algebra, there exists A ∈ A such that Au = w. As
L is A-invariant, this implies that w ∈ L, which is a contradiction.

Additional Comment

The remaining pages herein concern a more significant slip. My original
claim in Proposition 3.23 was false. What was required in Proposition 3.23

was a minimal left ideal, not simply a single matrix column. Thus,
Proposition 3.23 and Corollary 3.24 required rewriting, as did Theorem

4.23. These revisions are on the pages that follow.
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3.4 REPRESENTATIONS AND LEFT IDEALS 99

In other words, the invariant subspace lattice of %(A) is precisely the set of
left ideals of A.

The concept of left ideal is, therefore, naturally related that of an in-
variant subspace, and a few of these connections are explored here.

Suppose that G and N are left ideals of an algebra A.

1. The left ideal N is called a maximal left ideal if

(i) N 6= A, and

(ii) for every left ideal W such that W ⊇ N, either W = N or
W = A.

2. The left ideal G is called a minimal left ideal if

(i) G 6= {0}, and

(ii) for any left ideal K of A with K ⊆ G, either K = {0} or K = G.

In this book, the minimal left ideals that we are most interested in are
those in matrix algebras over division algebras. The following example
shows how some of these ideals can be constructed.

3.23 Example. (A minimal left ideal of Mn(D).) Assume that D is a
division algebra over a field F. Fix l and consider the set

Gl =























0 . . . 0 d1l 0 . . . 0
0 . . . 0 d2l 0 . . . 0
...

...
...

0 . . . 0 dnl 0 . . . 0









: dil ∈ D for all i















.

Straightforward matrix multiplication reveals that AX ∈ Gl for every A ∈
Mn(D) and every X ∈ Gl; thus, Gl is a left ideal. To show that Gl

is minimal, first adopt the notation that was introduced in the proof of
Proposition 2.32: Eij ⊗ dij shall denote the matrix in Mn(D) whose (i, j)-
entry is dij ∈ D and whose other entries are zero. Thus, Gl = {

∑n

i=1
Eil ⊗

dil : dil ∈ D, 1 ≤ i ≤ n}. Fix l and assume that W is a nonzero left ideal
such that W ⊆ Gl. We aim to prove that W = Gl.

Choose a nonzero x ∈ W. Then x =
∑n

m=1
Eil ⊗ sml and there is

at least one i such that sil 6= 0. Consider y = Eii ⊗ s−1

il ∈ Mn(D).
Because W is a left ideal, we have Eil ⊗ 1 = yx ∈ W. Likewise, for any k,
Ekl ⊗ 1 = z(Eil ⊗ 1) ∈ W, where z = Eik ⊗ 1. Now let d1l, . . . , dnl ∈ D be
arbitrary. Then

n
∑

i=1

Eil ⊗ dil =

(

n
∑

i=1

Eii ⊗ dil

) (

n
∑

i=1

Eil ⊗ 1

)

∈ W .

Hence, W ⊇ Gl. ♦



100 3. INVARIANT SUBSPACES

The left ideals Gl in Example 3.23 are not the only minimal left ideals
of Mn(D). For example,











d1 d1 0
d2 d2 0
d3 d3 0



 : d1, d2, d3 ∈ D







is also a minimal left ideal of M3(D). The link between this example and
G1 is that both are sets of the form {ae : a ∈ Mn(D)}, where e ∈ Mn(D)
is a fixed nonzero idempotent. This observation leads to a quite general
characterisation of the minimal left ideals of L(V ).

3.24 Proposition. If W ⊆ L(V ) and V is a nonzero finite-dimensional

vector space, then W is a minimal left ideal of L(V ) if and only if W =
{ae : a ∈ L(V )} for some rank-1 idempotent e ∈ L(V ).

Proof. Assume that e ∈ L(V ) is an idempotent with one-dimensional
range. Then there is a basis {v1, . . . , vn} of V such that ran e = Span {v1}
and ker e = Span {v2, . . . , vn}. The matrix representation of e with respect
to the basis {v1, . . . , vn} is simply the matrix unit E11 in Mn(F). Thus,
{ae : a ∈ L(V )} is represented as {AE11 : A ∈ Mn(F)}—in other words,
as G1. By Example 3.23, the left ideal G1 is minimal; hence, {ae : a ∈
L(V )} is a minimal left ideal of L(V ).

Conversely, assume that W is a minimal left ideal of L(V ). Let I ⊆ L(V )
be the subspace of all finite sums of all linear transformations of the form
wa, where w ∈ W and a ∈ L(V ). It is plain to see that I is a nonzero ideal
of L(V ); because L(V ) is simple, we conclude that I = L(V ). Therefore,

L(V ) = I =

{

m
∑

i=1

w̃iyi : m ∈ Z
+, w̃i ∈ W, yi ∈ L(V )

}

=







m
∑

i=1

n
∑

j=1

w̃iwjaj : m, n ∈ Z
+, w̃i, wj ∈ W, aj ∈ L(V )







.

Hence, there is at least one pair x, y ∈ W for which xy 6= 0.
With such a pair, consider now the left ideal Ly = {wy : w ∈ W}

of L(V ). The previous paragraph shows that Ly is nonzero; thus, by the
minimality of W, Ly = W. Consequently, there is a nonzero e ∈ W with
ey = y. From e2y = e(ey) = ey = y follows (e2 − e)y = 0. Set W0 = {z ∈
W : zy = 0}; so e2 − e ∈ W0 and W0 is a left ideal of L(V ) contained in
W. However, e ∈ W\W0 implies that W0 = {0}. Therefore, e2 = e and
the left ideal {ae : a ∈ L(V )} of L(V ) is nonzero and contained in W.
Hence, W = {ae : a ∈ L(V )}. The proof that e has rank 1 is left as an
exercise. �



4.4 ISOMORPHISM CLASSES OF SEMISIMPLE ALGEBRAS 141

Thus, Mn(D) has exactly n distinct nonzero minimal left ideals. The di-
mension of each such left ideal is simply n(dimD), because any one column
has n positions and each entry in this column lies in a space of dimension
equal to the dimension of D.

Now, what is a possible choice for the idempotent e whose role is so
important in the proof of Theorem 4.21 ? Fix a minimal nonzero left ideal
Gl. Basic matrix multiplication reveals that the matrix unit Ell serves well
for e. For any A ∈ Mn(D), EllAEll is the matrix with the (l, l)-element
of A in position (l, l) and zeros elsewhere. So clearly Ell(Mn(D))Ell

∼= D,
which is precisely to be expected from the proof of Theorem 4.21. Moreover,
multiplication of any matrix A on the right by Ell simply leaves column l

of A fixed and sends the other columns to zero, hence, Gl = Mn(D)Ell, as
predicted by the proof of the Theorem 4.21.

Further analysis of simple algebras must, evidently, involve a study of
division algebras. The fascinating theory of division algebras is a highly
nontrivial subject in itself, and we do not attempt to touch upon it in
greater detail in this book.

4.4 Isomorphism Classes of Semisimple Algebras

The results concerning the structure of simple and semisimple algebras lead
to a classification of such algebras up to isomorphism.

4.23 Isomorphism of Simple Algebras. If D1 and D2 are division

algebras over F, and if n1, n2 ∈ Z
+, then Mn1

(D1) ∼= Mn2
(D2) if and only

if n1 = n2 and D1
∼= D2.

Proof. Suppose that ϕ : Mn1
(D1) → Mn2

(D2) is an isomorphism.
Let {eij : 1 ≤ i, j ≤ n1} and {fst : 1 ≤ s, t ≤ n2} be the standard
matrix units of Mn1

(F) and Mn2
(F), respectively. Using the notation of

Proposition 2.32 and Example 3.23, every element x ∈ Mn1
(D1) has the

form x =
∑

i,j δij ⊗ eij, for some {δij}
n1

i,j=1
⊂ D1. Let Eij = 1 ⊗ eij ∈

Mn1
(D1). The matrices Eij satisfy the usual relations for matrix units

and, hence, so do the matrices Fij = ϕ(Eij) ∈ Mn2
(D2).

Because ϕ(1) = 1, we have that

1 =

n1
∑

i=1

Fii =

n2
∑

t=1

1 ⊗ ftt .

Further, there are dst ∈ D2 such that

1 ⊗ f11 =

n1
∑

i,j=1

dst ⊗ Fij .



142 4. SEMISIMPLE ALGEBRAS

Fix a pair (p, q) for which dpq 6= 0. Consider y = F1p(d
−1
pq ⊗ f11) and

z = (1 ⊗ f11)Fq1 in Mn2
(D2). Because f2

11 = f11, we have, on the one
hand,

yz = F1p(d
−1
pq ⊗ f11)Fq1 = F1p





n1
∑

i,j=1

d−1
pq dst ⊗ Fij



 Fq1 = ϕ(E11) .

On the other hand,

zy = (d−1
pq ⊗ f11)F11(1 ⊗ f11) ∈ {d ⊗ f11 : d ∈ D2} ∼= D2 ,

where the identity of D2 is identified with 1 ⊗ f11. As F11 = y(zy)z, the
element zy ∈ D2 is nonzero. Moreover, (zy)2 = zy; hence, via cancellation
in D2, zy = 1 ⊗ f11.

Next, let

a =

n1
∑

i=1

Fiiy(1 ⊗ f1i) , b =

n1
∑

j=1

(1 ⊗ fj1)zF1t .

Thus, ab = 1 and so

1 = ba =

n1
∑

j=1

(1 ⊗ fjj) =

n2
∑

t=1

(1 ⊗ ftt) .

Hence, n1 = n2.
Finally,

D1
∼= E11(Mn1

(D1))E11
∼= ϕ (E11(Mn1

(D1))E11)

= F11(Mn2
(D2))F11

= (1 ⊗ f11)Mn2
(D2)(1 ⊗ f11)

∼= D2 .

Conversely, the proof that Mn(D1) ∼= Mn(D2), if D1 and D2 are iso-
morphic division algebras, is easy and so is omitted. �

4.24 Isomorphism of Semisimple Algebras. Suppose that A and B

are the semisimple algebras

A ∼= (Mk1
(D1)) × · · · × (Mkn

(Dn)) ,

B ∼= (Ml1 (D
′

1)) × · · · × (Mlm(D′

m)) .

Then A and B are isomorphic if and only if m = n and there is a permu-

tation τ ∈ Sn such that li = kτ(i) and D′

i
∼= Dτ(i) for all i = 1, . . . , n.
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